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Abstract

In this paper we adapt the Hamiltonian Monte Carlo (HMC) algorithm to Dynamic

Stochastic General Equilibrium (DSGE) models, a method currently applied in var-

ious fields owing to its superior sampling and diagnostic properties. We implement

it into a freely available state-of-the-art, high-performance software (Stan). We es-

timate a small-scale textbook New Keynesian model and the Smets-Wouters model

using US data. We find that in particular cases the HMC algorithm is faster by

over an order of magnitude compared to the standard sampling method. Our results

and sampling diagnostics confirm the parameter estimates available in the existing

literature. In addition, we find bimodality in the Smets-Wouters model even if we

estimate it by using the original tight priors. Finally, we combine the HMC frame-

work with the Sequential Monte Carlo (SMC) algorithm to create a powerful tool

which enables us to estimate DSGE models with ill-behaved posterior densities.
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models have been shaping modern

macroeconomic theory since the seminal contribution made by Kydland and Prescott

(1982). In the past two decades DSGE models have been extended along a number of

lines and have become the workhorse framework for analysing economic fluctuations and

forecasting. Likelihood-based estimation has increasingly gained attraction1, and a suf-

ficiently proper fit of the empirical data has been achieved compared with other model

classes.

The aim of this paper is to contribute to the literature on DSGE estimation by imple-

menting the Hamiltonian Monte Carlo (HMC) algorithm for DSGE models. The HMC is

widely used in numerous fields of academic research owing to its superior features such as

high efficiency and enhanced diagnostics compared with other Markov Chain Monte Carlo

(MCMC) methods. As an extension, we merge the HMC with the Sequential Monte Carlo

(SMC) algorithm to estimate ill-behaved, bimodal posterior densities in an established

DSGE model.

The pioneering work on Bayesian DSGE model estimation dates back to Schorfheide

(2000) and Otrok (2001) and serves as the core of other MCMC-based estimation methods.

Herbst and Schorfheide (2015) provides an excellent summary on the latter algorithms.

To address the challenge of increasing modeling complexity, sequential sampling based

estimation methods were developed as well, e.g. particle filters, see Fernandez-Villaverde

and Rubio-Ramirez (2007) and Herbst and Schorfheide (2019) or the SMC algorithm.

The SMC method was first applied to DSGE models by Creal (2007), then formalized by

1Initially, simple DSGE models were calibrated to match only selected moments of the data due to their
restrictive nature. A complete review of the methodology and the transition from small scale calibrated
DSGE models to the state-of-the-art estimation of medium to large scale models would be beyond the
scope of this paper, therefore we refer to the excellent work of Fernandez-Villaverde et al. (2016).
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Herbst and Schorfheide (2014) and constitutes also the core of Cai et al. (2021).

Although the standard MCMC-type estimation framework is widely applied in the

DSGE literature and is readily available in standard software, it suffers from several weak-

nesses which have mostly been addressed either inadequately or not at all. Firstly, the

simulated sample draws often suffer from considerably high autocorrelation, which results

in a very small effective sample size. A common approach to addressing this shortcoming

is to run longer and multiple chains and to consider only each n-th draw to obtain un-

correlated samples. Yet, thinning the Markov chain can render sampling inefficient as it

easily becomes time-consuming, particularly when the dimension of the parameter space

and the model itself is high. Secondly, the standard random-walk MCMC algorithm will

explore the typical set only slowly in higher dimensional spaces. Large transitions from

one point to another in the typical set will not be possible because the number of direc-

tions to move the chain increases exponentially in line with the dimension. Consequently,

“we need a better way of exploring the typical set” and “to better exploit the geometry

of the typical set itself”, as suggested by Betancourt (2018, p.16.). Thirdly, although in

theory the MCMC algorithm converges asymptotically to the target distribution under

certain regularity conditions, in practice this convergence might occur very slowly. One

of the key questions – namely whether the Markov chain has already converged to the

target distribution – lacks a clear answer for the time being. Unfortunately, there is no

one single way of addressing the latter issue. Instead, “the idea is to use a wide variety

of diagnostics so that if all appear to suggest that convergence has been achieved, then

the user can have some confidence in that conclusion”, as also pointed out by Brooks

and Gelman (1998, p.445.). Even if standard diagnostics suggests that convergence has

not yet been reached, it will be challenging to identify the reason for non-convergence, as
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available diagnostics does not provide any information on irregular regions of the posterior

distribution. Fourthly – although not completely unaddressed – it is common practice

to conduct a mode search to specify the starting point for MCMC-type samplers. This

practice is closely followed in the DSGE literature, and several algorithms for posterior

mode search are readily available in standard software for DSGE estimation. However,

mode search algorithms often fail to provide a suitable starting point or, alternatively,

their execution might be tedious and time-consuming. Furthermore, Betancourt (2018)

argues that, in general, the mode may not be representative of the typical set as the latter

can be increasingly distant from the mode in higher dimensions.

An advanced algorithm leveraging the information in the geometry of the typical

set and thereby addressing the above issues is the HMC algorithm. Similarly to the

Kalman filter and MCMC, it has its roots in physics and dates back to Duane et al.

(1987).2 It is considered to be the new standard in high-dimensional numerical simulation,

where the gradient of the target density can be evaluated. Given the accessibility of

the advanced software package for Bayesian estimations (Stan) implementing the HMC

algorithm, this methodology is currently being applied by many researchers in various

fields. The HMC has been shown to have significantly better sampling properties than

the baseline algorithm – the Random-Walk Metropolis-Hastings (RWMH), see e.g. Neal

(2011) – where the latter algorithm is the workhorse estimation framework for DSGE

models. Herbst and Schorfheide (2015) also acknowledge the advantages of the HMC

and state that progress in this direction in the field of DSGE model estimation would be

preferable.

To the best of our knowledge, this is the first available paper to apply the HMC

2In the original work of Duane et al. (1987) it was called ’Hybrid Monte Carlo’ and designed for the
numerical simulation of lattice field theory simulations of quantum chromodynamics.
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algorithm to DSGE models and to present any results.3 We have implemented the HMC

in Stan because it uses C++, a low-level, high-performance programming language.4

This tool is suitable for dealing with complex models and symbolic differentiation, which

makes their accurate implementation feasible. There is therefore no need to rely on

approximations of the gradient of the posterior likelihood function. It also comes complete

with a set of powerful diagnostics and a visualisation toolkit, which are readily available

and unique to HMC and provide further evidence of whether the typical set has been

explored appropriately.5

In contrast to the RWMH sampler, the HMC is more efficient because in the optimum

its draws are uncorrelated. This implies that the HMC is more likely to explore the typical

set properly even in higher-dimensional problems. A further advantage of the HMC is that

time-consuming and potentially erroneous mode estimation can be abandoned because

its gradient-based sampling provides guidance on how to find and explore the typical set

appropriately; see Betancourt (2018). Moreover, the diagnostics is capable of revealing

inefficient or improper sampling caused by fat tails, funnels or high curvature and may also

serve as an indication of difficult-to-sample parameters, which are potentially attributable

to weak identification.6

To demonstrate the features of the HMC algorithm we first present stylised exam-

ples and then estimate the textbook small-scale New Keynesian model from Herbst and

3In contemporaneous work Fernandez-Villaverde and Guerron-Quintana (2021) propose the appli-
cation of HMC for DSGE estimation and work is in progress to apply it to differentiable state space
models.

4C++ can be considered as a superset of the C language with features added as e.g. object-oriented
programming, exception handling, a rich C++ library and improved memory management.

5For a recent review of the work-flow with Stan we refer to Gabry et al. (2019).
6In particular, if the autocorrelations of the sample draws generated by the HMC algorithm does not

decay to zero after the first lag, it indicates that a specific parameter is difficult to sample implying that
the posterior is either oddly shaped, or the parameters suffer from weak identification. In contrast, the
high autocorrelation of the Metropolis-Hastings algorithm is an inherent feature and thus cannot be used
to identify problematic parameters.
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Schorfheide (2015) and the Smets and Wouters (2007) model (hereafter SW model). We

find that in particular cases the HMC algorithm provides a twenty-fold improvement in

sampling speed over the RWMH algorithm. The results we obtain with the HMC algo-

rithm are very similar to those in the existing literature. Given the HMC diagnostics, we

wish to point out that there are no severe local irregularities such as high curvature or

funnels which could frustrate the HMC sampler. This can be stated based on a relatively

small number of sample draws. In the SW model, however, certain parameters are diffi-

cult to sample from. These new insights suggest that abandoning the mode search and

applying gradient-based guided HMC sampling is beneficial owing to its unique features

that are not available to RWMH sampling around the mode. Furthermore, we also find

that a handful of parameters in the SW model feature bimodal posterior distributions

even if tight priors are set and the entire data sample is used for the estimation.

Although implementing the HMC algorithm for DSGEmodels paves the way for a more

sophisticated exploration of the typical set and provides access to powerful diagnostics,

it shares one drawback with RWMH: it fails to deal with multimodal target densities. If

modes are separated by large energy barriers, e.g. the posterior likelihood function has

no support between them, the HMC will get stuck in one mode and will not be able to

escape within a reasonable time. To address this shortcoming we merge the HMC with

the SMC algorithm presented in Herbst and Schorfheide (2014) and explore ill-shaped,

bimodal posterior densities in the SW model when less restrictive priors are set.

The remaining part of this paper is organised as follows. In Section 2 we present the

HMC algorithm and describe our approach to adapting it to the estimation of DSGE

models. Section 3 contains stylised examples that visualise unique features of the HMC

algorithm. It also presents the estimation results of the textbook small-scale New Key-
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nesian DSGE model and the SW model. Section 4 extends the paper by combining the

HMC and the SMC to estimate ill-behaved posterior densities. Section 5 concludes the

paper.

2 The Hamiltonian Monte Carlo Method

This section starts with an overview of the general Bayesian DSGE estimation framework

and provides then an intuitive description of the operation of the HMC algorithm in

general. Afterwards we explain how to adapt the HMC algorithm to estimate linearized

DSGE models. For a more extensive treatment we refer to the Technical Appendix.

To estimate a Bayesian model, the first step is to specify the joint distribution of

the data and the model parameters, P (Y, θ), represented by its corresponding density

function, p(Y, θ).7 To obtain the posterior density, p(θ|Y ), one can apply Bayes’ rule:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

(1)

where p(Y |θ) is referred to as the likelihood function and p(θ) is the density function of

the prior distribution. To specify a likelihood function conditioned on the parameters

and to turn a DSGE model into a Bayesian model, a formal representation of the DSGE

model is needed. Hence, we need to solve for the law of motion of the state variables

which can be carried out by a variety of DSGE solution algorithms.8 In case the DSGE

model has a unique stable solution it can be represented in the following VAR-form:

st = G0(θ)st−1 +G1(θ)ϵt (2)

where st is the vector of model variables at time t, ϵt is the error term vector and G0(θ)

7Throughout this paper, distributions will be represented by their corresponding density functions.
8See e.g. Blanchard and Kahn (1980), Binder and Pesaran (1997), King and Watson (1998), Uhlig

(1999), Klein (2000), Kim (2000), Christiano (2002), Sims (2002) and Anderson (2010).
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and G1(θ) are matrices of appropriate dimensions depending on the parameter vector θ.

The above VAR-form is linked to the data by means of the measurement equation:

yt = H0(θ) +H1(θ)t+H2(θ)st + ut (3)

where yt represents the observed data vector, ut the measurement error, H0, H1 and H2

are again appropriate matrices. The state space representation permits the expression of

the joint density function for the observed data and the DSGE model variables where the

latter are generally unobserved:

p(Y1:T , S1:T |θ) =
T∏
t=1

p(yt, st|Y1:t−1, S1:t−1, θ) =
T∏
t=1

p(yt|st, θ)p(st|st−1, θ) (4)

p(yt|st, θ) and p(st|st−1, θ) are the conditioned probability density functions of the ob-

servables and the states given the parameters and the present and lagged values of the

states. To obtain the likelihood function the unobserved states, st, have to be integrated

out. For linearized DSGE models with Gaussian error terms one can apply the Kalman

filter for the latter purpose and to obtain the log-likelihood function, p(Y1:T |θ). Once the

prior density of the parameters, p(θ), is specified one can set up the RWMH algorithm to

sample from the posterior density by applying Algorithm 1.9 The proposal density q(·|·)

is chosen to be the normal distribution with expected value θ(n−1) which implies that

the proposals follow a random walk.10 The scaling parameter, c0, should be chosen in a

way that the acceptance ratio equals to 23.4 percent, that was proven to be the optimal

acceptance ratio under specific assumptions, see Roberts et al. (1997). In practice, this

parameter is chosen in a way that the acceptance ratio lies in the range of 20-40 percent.

There exist several other modified versions of the MH-algorithm: the Block-MH al-

gorithm, applied e.g. by Cúrdia and Reis (2010), the Metropolis-Adjusted Langevin

9This algorithm summarizes the main steps extensively described in Herbst and Schorfheide (2015).
10As the density function of the normal distribution is symmetric, the proposal densities cancel.
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Algorithm 1 Random Walk Metropolis Hastings

1. Maximize lnp(Y |θ) + lnp(θ) by a numerical algorithm to obtain the posterior mode,
denoted by θ̃. This includes the solution of the DSGE model for θ and the evaluation
of p(Y |θ) and p(θ).

2. Compute Σ̃, the inverse of the Hessian at θ̃.

3. Initialize a starting value or draw θ(0) from the proposal density q(θ(0)|θ̃) (in this
case N(θ̃, c20Σ̃)), solve the DSGE model for θ(0) and evaluate p(Y |θ(0)) and p(θ(0)).

4. For n = 1, ..., N

(a) Draw θ′ from the proposal distribution N (θ(n−1), c20Σ̃).

(b) Solve the DSGE model for θ′ and evaluate p(Y |θ′) and p(θ′).
(c) Accept θ′, i.e. (θ(n) = θ′), with probability min

{
1, f(θ(n−1), θ′|Y )

}
and reject

(θ(n) = θ(n−1)) otherwise, where

f(θ(n−1), θ′|Y ) =
p(Y |θ′)p(θ′)q(θ′|θ(n−1))

p(Y |θ(n−1))p(θ(n−1))q(θ(n−1)|θ′)
.

5. Estimate the posterior expected value of the function h(θ) by 1
N

∑N
i=1 h(θ

(i)).

(MALA) algorithm, originally proposed by Besag (1994) and the MH-Newton algorithm,

see Qi and Minka (2002).11 In addition to the very popular strand of first-order linearized

DSGE models there exist more elaborated ones with non-linear state spaces. To evaluate

the likelihood function in this more complex environment, particle filters were proposed

in the literature, e.g. in Fernandez-Villaverde and Rubio-Ramirez (2007). At the same

time, particle filters such as the SMC algorithm in Herbst and Schorfheide (2014) are

also applied if the posterior likelihood is irregularly shaped which may even occur when

standard models are estimated using first order linear approximations. Our extension of

the HMC algorithm with SMC falls into the latter category of applications.

Similarly to advanced MCMC methods from above, the HMC algorithm builds on the

information provided by the gradient of the log-posterior density function. It uses the

information in the geometry of the target distribution, that is, its shape and the equations

11For further details we refer to the Technical Appendix and an excellent assessment can be found in
Herbst and Schorfheide (2015).
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characterizing it. Its main advantage is that by means of the Hamiltonian equations, a

concept borrowed from physics, the algorithm enables to propose a new parameter draw

θ′ which is distant from the current one, θ, while it maintains very high acceptance rates.

To illustrate the concept of HMC let us apply it to a simple example.12 We assume

that one intends to sample from a one dimensional standard normal distribution with

density function f(q) = 1/(2π)1/2exp{q2/2}. The aim is to generate samples for q from

each location of the domain of q, the real line, in proportion to the value of the density

function, f(q), at that location of the domain. This case is illustrated in Figure 1.

Figure 1: Sample Draws from a Normal Distribution

Notes: The blue circles show desired sample draws from a standard normal target density, displayed in
black color.

To understand the idea of the HMC algorithm let us make a small excursion to physics.

In classical mechanics the dynamics of a mechanical system over time given a particle’s

position and momentum is modeled by functions measuring the potential and kinetic

energy of the particle. Classical examples of a mechanical system are a bouncing ball,

a pendulum or an oscillating spring. The evolution of such a system can be perfectly

described by the Hamiltonian equation, measuring the total energy which is the sum of

12Our explanation draws on the example in the excellent book of Lambert (2018).
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potential energy, U(q), and kinetic energy, K(p):

H(p, q) = U(q) +K(p) (5)

The change in the position q and in the momentum p, both of dimension d, respectively,

over time is characterized by the solution to the following system of partial differential

equations derived from the Hamiltonian equation:

dqi
dt

=
∂H(q, p)

∂pi
∀i = 1, ..., d

dpi
dt

= −∂H(q, p)

∂qi
∀i = 1, ..., d

In an ideal, frictionless mechanical system the total energy always remains constant which

turns out to be a handy property when applying the Hamiltonian in a probabilistic setting.

To apply this concept to our simple sampling problem from above let us consider

instead of f(q) the negative logarithm of the density function g(q) := −logf(q). Thereby

we flip over f(q) and obtain a valley-shaped function g(q), being the new target density.

Next, we imagine a person using a sleigh and trying to explore the valley covered in

snow, i.e. the new target density defined by g(q). We assume that our explorer starts

out at some point in the valley, sitting on a sleigh, somewhere on the surface generated

by the function g(q) and is initially pushed randomly with some impulse, either uphill or

downhill, see Figure 2. In contrast, think of the RWMH algorithm as a person exploring

the valley by foot and proceeding in equally distant steps in random directions. Assuming

that our explorer on the sleigh started her journey downhill, after passing the trough of

the valley she will continue sliding uphill. After getting gradually slower she will stop at

some point and will start sliding again downhill into the opposite direction, and so on.
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Figure 2: Hamoltionan Monte Carlo vs. Random Walk Metropolis Hastings

Notes: The figure shows an illustrative comparison between the mode of operation of the RWMH and
the HMC algorithm if sampling from a one dimensional normal density.

Assuming also that the snow-covered surface of the valley is frictionless, this motion will

continue forever as the total energy remains constant. The motion of the sleigh on a

frictionless surface can be perfectly described by the Hamiltonian equation in analogue to

the mechanical systems mentioned before. The total energy of the sleigh can be described

by its potential energy function U(q) := g(q) and its kinetic energy K(p) := |p|2/(2m),

depending on its momentum p and m corresponds to the mass of the sleigh with the

person. By moving up or down the valley the explorer on the sleigh exchanges potential

energy U(q) for kinetic energy K(p). As the sleigh slides down (up) the hill, its potential

energy will decrease (increase) and its kinetic energy increase (decrease). After some time

t = T we record the position q of our sleighing explorer. Given the shape of the terrain

the person with the sleigh will be more often in lower regions of the valley than in higher

regions. In contrast, a RWMH explorer would find it easy to walk downhill to the trough

of the valley, but would struggle to make steps upwards. In other words, under RWMH

sampling a proposal is always accepted if the probability of the new proposal q′ is larger

than the probability of the current draw q, steps downhill, and only accepted randomly

depending on the proportion of the probabilities of q′ and q, steps uphill. Therefore, by

applying RWMH sampling, the explorer would walk down to the valley, and explore the
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region in the bottom, i.e. the target density around the mode, but always struggle to

make steps uphill and proceed only very slowly.

A straightforward question to ask is: Why is the explorer on the sleigh able to effort-

lessly slide and to always arrive safely at the other side of the valley? The core of the

concept is that by tracking the momentum p and the kinetic energy K(p) the parameter

space is extended by the same dimension to measure total energy. This extended space is

called the phase space and is fundamental to Hamiltonian dynamics. Visually, extending

the parameter space and tracking both position and momentum at the same time allows

the sleigh moving from one side to the other side of the valley just by sliding around on

the same (energy) level, hence moving only horizontally in this simple case, see Figure 3.

Figure 3: Visualization of the Hamiltionan Monte Carlo Algorithm

Notes: The figure illustrates the mode of operation of the HMC algorithm in the extended parameter
space if used to sample from a normal density. When the sleigh moves horizontally on the same height
the Hamiltonian equations are used to calculate the path and keep the sleigh on the same energy level.
The vertical move of the sleigh demonstrates a new impulse draw after the sleigh was stopped and the
sample draw was recorded. The new impulse moves the sleigh to a different energy level on which it
again continues exploring the extended parameter space horizontally along the new path defined by the
Hamiltonian equations. Source: author’s illustration.

The reason why the sleigh remains at the same energy level is that in a frictionless

mechanical system the total energy always remains constant. Therefore, in the extended
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space the application of the Hamiltonian equation ensures that along the Hamiltonian

path the acceptance probability is always unity and the new proposal is always accepted,

as long as the system of differential equations can be solved accurately. In this extended

space, stopping and then pushing the sleigh with a different impulse is equivalent to

’moving’ it onto a different height, hence energy level, sliding horizontally again along the

Hamiltonian path, i.e. the contour lines of the extended space. When stopping the sleigh,

the explorer ’brakes’, throws away kinetic energy K(p), e.g. by wasting it while braking,

and records only the current position q. By repeating the process of pushing the sleigh

with a random impulse, letting it slide and stopping it sufficiently often, the valley will be

explored appropriately. The sequence of the recorded positions at each stop equals then

the sequence of sample draws and the kinetic energy is simply ignored. This allows us

to define Algorithm 2 for the proposal of the new sample draw and the update step in a

typical Metropolis-Hastings algorithm instead of using random proposals.

Algorithm 2 Hamiltonian Monte Carlo

1. Draw a momentum vector p from its multivariate normal distribution which can be
carried out by Gibbs-sampling.

2. Draw the position vector and the momentum vector (q′, p′) by applying the Hamil-
tonian equations deterministically starting from q = q(n) and p.

3. Metropolis-Hastings step: accept the new proposal and set q(n+1) = q′ with proba-
bility min[1, exp(−(U(q′)− U(q) +K(p′)−K(p)))].

This update scheme can be applied to any target density function by considering the

negative logarithm of the target density instead, in analogue to the simple case from above.

However, the more complex sampling algorithm requires significantly larger computational

resources. The main bottleneck of the algorithm is to calculate the partial derivatives of

the Hamiltonian equation, in particular those of the likelihood function. Furthermore,

one needs to solve the resulting system of differential equations.
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To implement the algorithm for DSGE models we used Stan, a state-of-the-art proba-

bilistic programming language for Bayesian inference written in C++ language. It allows

users to set up hierarchical Bayesian models and provides an easy to apply interface to

the HMC algorithm for complex models. One of the key challenges lies in the accurate

solution of the Hamiltonian equations. A dedicated class of symplectic integrators can be

applied enabling the calculation of an accurate discrete time solution for the Hamiltonian

trajectory in the phase space. The main advantage of the latter class of integrators is

that the approximated trajectory does not drift away from the true one, even if integra-

tion is carried out over a long distance, hence a long period of time. Stan uses a simple

implementation referred to as ’leapfrogging’ to solve for the discrete-time approximation

of the Hamiltonian equations which is summarized by Algorithm 3.

Algorithm 3 Leapfrogging

1. pi(t+ ϵ/2) = pi(t)− (ϵ/2)
∂U

∂qi
(q(t))

2. qi(t+ ϵ) = qi(t) + ϵ
pi(t+ ϵ/2)

mi

3. pi(t+ ϵ) = pi(t+ ϵ/2)− (ϵ/2)
∂U

∂qi
(q(t+ ϵ))

Although the algorithm is easy to implement at first glance, it generates a further

challenge, especially when applied in the context of DSGE estimation. It requires the

evaluation of the gradient of the log-posterior which might be difficult and time intensive.

Gradients obtained by numerical approximations can be inaccurate or computationally

demanding when the parameter space is large. One of the main advantages of Stan

is that it applies a reverse-mode automatic differentiation and C++ template metapro-

gramming which requires only a limited number of differentiation rules. The gradient is

constructed via the chain rule by creating an expression tree backwards starting with the
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last expression in the likelihood function. Stan is capable of differentiating any iterative

algorithm which is particularly useful when implementing the estimation of DSGE mod-

els. A straightforward fully iterative DSGE solution method is the Binder and Pesaran

(1997) algorithm which allows for a direct implementation in Stan. A further built-in

feature of Stan is that it automatically optimizes the number of steps by means of the No

U-Turn Sampling (NUTS) algorithm, see Hoffman and Gelman (2014). It avoids thereby

that the sampler turns back into the direction of the actual sample draw to be updated.13

3 Applications

In the first part of this section we present stylized numerical examples to demonstrate the

unique features of the HMC algorithm along with its novel diagnostic capabilities. In the

second and third part we show the results obtained by applying the HMC algorithm to

a textbook small scale New Keynesian model and subsequently to the medium scale SW

model serving as the core for a wide range of applied policy models.

3.1 Stylized Numerical Examples

The HMC algorithm makes use of the information in the gradient of the posterior like-

lihood function and allows for traversing large distances in the parameter space while it

maintains high acceptance probabilities along the Hamiltonian path. In the optimal case,

when the posterior density is not ill-behaved, thus there are no irregularities in its sur-

face, HMC is capable of sampling effortlessly and produces virtually uncorrelated sample

draws. In contrast, an ill-behaved posterior density could render it difficult to be explored

appropriately by a given sampler which may lead to inaccuracies of the estimation results.

13For a more formal treatment of HMC and for further details on the implementation using Stan we
refer to the Technical Appendix.
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In the latter case, the RWMH sampler could for example get stuck. The new proposal

would be typically rejected when trying to enter ill-behaved parts of the posterior density

so that certain parts could remain less well or even completely unexplored. In practice,

the RWMH algorithm is tuned to accept between 20-40 percent of the proposed updates,

therefore rejections or high autocorrelation in the sample draws would per se not indicate

an irregularity of the posterior distribution and possible sampling issues. In the presence

of irregularities, the HMC algorithm would, however, struggle with producing uncorre-

lated sample draws or even entirely drift off from the Hamiltonian path and thus indicate

sampling issues. In addition, due to its setup and diagnostic features HMC is capable of

providing information on the source of the problem. The following stylized examples aim

at visualizing these unique features and diagnostic capabilities of the HMC algorithm.

Autocorrelated sample draws

ARMA(p, q) processes are typically applied in a DSGE framework to model exogenous

processes with anticipated shocks, often referred to as news shocks or foresight in the eco-

nomic literature, see e.g. the price and wage markup shock processes in the SW model.

Although in certain cases it might be well-justified to specify ARMA(p, q) shock processes,

it may also lead to estimation issues. For example, if the data generating process is white

noise, the model would become overidentified and parameters weakly identified, which

could result in inefficient sampling or wrong conclusions and interpretation of the param-

eters. Furthermore, the posterior distribution could degenerate completely which would

lead to severe sampling issues. In case the posterior is not completely degenerate, due to

its construction, HMC may deliver information on problems with model specification. To

visualize this, we generate a white noise process ut
iid∼ N(0, 0.1) with 1,000 observations

and fit an ARMA(1,1) process ut = ρut−1+ ϵt−µϵt−1 with uniform priors for ρ, µ ∈ [0, 1].
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Figure 4: Sample Draws and Autocorrelations – ARMA(1, 1)

Notes: The scatter plot (left) displays 1,000 sample draws for ρ, µ ∈ [0, 1] using the HMC algorithm
if estimating an ARMA(1,1) process ut = ρut−1 + ϵt − µϵt−1 whereas the data generating process is

ut
iid∼ N(0, 0.1). The bar charts (right) show the estimated correlograms for ρ and µ.

For the standard deviation of the disturbance, σ, we postulate an inverse gamma prior

distribution σ ∼ IG(0.1, 2). The scatter plot in Figure 4 shows 1,000 sample draws for

ρ and µ obtained by applying the HMC algorithm.14 A visual inspection of the sample

draws from the realized posterior distribution suggests that the joint distribution of ρ and

µ corresponds to a ridge along the main diagonal of [0, 1] × [0, 1] as any combination of

ρ = µ exactly offsets the mutual effect of the parameter pair. For the generated data

series ρ and µ are estimated at approximately 0.42 and 0.38, respectively, being signifi-

cantly different from zero. While observationally all combinations of ρ and µ along the

ridge should generate very similar time series, their interpretation is different though. As

shown in Figure 4 the sample draws for ρ and µ exhibit autocorrelation which does not

appear to be severe at first sight as it does not render the effective sample size chronically

low. However, if the model is not overidentified, hence we fit a pure AR(1) process with

ρ ∈ (−1, 1), HMC samples effortlessly and one obtains uncorrelated sample draws. ρ is

estimated then at 0.04 which corresponds approximately to the true value. In both cases

σ is estimated at very close to its true value of 0.1. This feature of the HMC algorithm

14For the tuning and warm-up phase 1,000 sample draws were used, respectively.
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Figure 5: Sample Draws and Autocorrelations – AR(1)

Notes: The trace plot (left) displays 1,000 sample draws for ρ ∈ [−1, 1] using the HMC algorithm if

estimating an AR(1) process ut = ρut−1 + ϵt whereas the data generating process is ut
iid∼ N(0, 0.1). The

bar chart (right) shows the estimated correlogram for ρ.

also translates into the estimation of a DSGE framework. We generated a data sample of

200 observations for the textbook small scale New Keynesian model proposed in Herbst

and Schorfheide (2015) by using the parameter estimates reported therein. However, we

fitted for the iid disturbances of both the technology and the government spending pro-

cess an ARMA(1,1) process. HMC delivered again significantly autocorrelated sample

draws for the parameters of the above processes as the latter overspecification resulted

in irregularities and low effective sample sizes.15 Overall, it appears that in the presence

of irregularities in the posterior distribution, possibly also related to identification issues,

the HMC algorithm is not capable of sampling effortlessly and produces autocorrelated

sample draws. Even if autocorrelation is not as severe that it would result in a chronically

low effective sample size it might be an indication of improper model specification. Hence,

the unique feature of the HMC algorithm to produce uncorrelated sample draws even in

higher dimensions may also contribute to uncover general issues with the model setup.

Divergent transitions

In practice we always deal with approximative models and finite data sets – in macroeco-

nomics the number of observations available is often relatively limited – so the geometry

15A summary of the effective sample sizes is provided in the Appendix. A detailed estimation of the
small scale model proposed in Herbst and Schorfheide (2015) with original data is carried out in the
following subsection.
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of the realized likelihood function can degenerate arbitrarily severely. The more complex

models are and the higher their dimension is, the more prone is the realized likelihood

function to manifest strong degeneracies along the dimension of particularly weakly in-

formed parameters. Severe degeneracies may obscure latent parts of interest in the model

and hence prevent an accurate quantification of the posterior density function leading to

inaccurate inferences. A further advantageous feature of the HMC algorithm is that by

resorting to the information in the gradient of the posterior likelihood function and fea-

turing a guided diffusion, it is capable of proactively diagnosing severe degeneracies which

geometrically impede accurate sampling and the computation of appropriate statistics.

A typical and well documented example for a severe degeneracy is e.g. Neal’s (2003)

funnel, a distribution with heavily narrowing ends. In a DSGE estimation framework a

model is typically solved and transformed into a VAR(1) form by applying a numerical

algorithm which renders it impossible to obtain a closed form solution of the entries of the

VAR(1) coefficient matrix depending on the parameters to be estimated. There will be

plenty of possibilities for sums and products of parameters characterizing the entries of the

VAR(1) coefficient matrix and shaping thereby the realized posterior likelihood function

to induce a severely degenerated distribution along certain dimensions. To demonstrate

the diagnostic capabilities of HMC we modify the stylized state space model from chapter

4.3 in Herbst and Schorfheide (2015) and borrow an example from Betancourt (2020).

yt = [0 1] st, st =

ϕ1 0

ϕ3 ϕ2

 st−1 +

1
0

 ϵt ϵt
iid∼ N(0, 0.752) (6)

The first state equation, s1,t, resembles an exogenous shock process in a DSGE model while

the second one, s2,t is similar to an endogenous state variable which depends on its own lag

19



and that of the exogenous process. For visualizational purposes we create a pathological

posterior distribution by setting ϕ1 = 0.2, ϕ2 = ab with a = 1 and b = 0.5 and ϕ3 = 1 to

generate a data sample of 100 observations. We use a uniform prior for ϕ1 on [0,1] and

also assume that a ∼ N(0, 10), b ∼ N(0, 1) with a ∈ [0, 10] and b ∈ [−2, 2]. Furthermore,

we observe only the endogenous state variable. In this setup the parameters a and b are

not well-identified which creates a funnel in the posterior likelihood distribution.16

We sampled from the posterior distribution using the HMC algorithm with standard

options as set up in Betancourt (2020). Hence, we estimate four parallel chains with

1,000 warm-up and 1,000 sample draws for each chain and let Stan tune the step size and

the mass matrix. Based on our sample draws, the HMC proprietary diagnostics looks

unpleasant. The diagnostics warns that approximately 20 percent of the sample draws

are divergent.17 This suggests, that the automatically calibrated step size for the leapfrog

integrator during the warm-up phase was inappropriate. When moving from the present

sample draw to the new proposal draw along the Hamiltonian path we drifted off the

energy level defined by the approximated Hamiltonian path using the leapfrog integrator.

The built in diagnostics of Stan identifies this as a divergent transition. The reason for this

can be easily revealed by plotting the sample draws, see Figure 6. Our model framework

generates a severely degenerated posterior density with a funnel which is an obstacle to

accurate sampling. It is narrowing excessively much for the sampler and prevents it from

reaching areas with high probability. To prove this, we manually adjusted the sampling

options by increasing ’adapt_delta’ from the default value, 0.8, to 0.99 and force thereby

the sampler to reduce the step size for the leapfrog integrator. This renders the sampler to

16As pointed out by Herbst and Schorfheide (2015), works of Iskrev (2010) and Komunjer and Ng
(2011) provide criteria to assess whether parameters of a DSGE model are locally identifiable, however
these are ex ante tests.

17In some of the simulations the divergence rate was even significantly higher.
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Figure 6: Degenerated Densities – Samples and Heat Maps for Parameters a and b

adapt_delta = 0.8 (a) adapt_delta = 0.99 (b)

adapt_delta = 0.8 (c) adapt_delta = 0.99 (d)

Notes: Figure (a) and (b) show the interpolated heat maps, measured in terms of the value of the
log posterior density, based on four chains with 1,000 warm-up and 1,000 sample draws in both cases,
obtained however with different step sizes setting adapt_delta to 0.8 and to 0.99, respectively. Figure (c)
and (d) plot the non-divergent and divergent sample draws from the same estimations with adapt_delta

set to 0.8 and to 0.99, respectively.

expand deeper into the funnel. Although we refined the HMC sampler to the maximum as

recommended by its built in diagnostics, we still remain with a low percentage of divergent

transitions, possibly also attributable to high local curvature which frustrates the sampler

too. In general, in presence of severe divergence of the HMC algorithm modelers should

be advised to review the model framework as a whole and either reparameterize it to

obtain a better behaved density or change it to resolve possible issues with identification

resulting in ill-behaved densities.
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We also estimated the same model using RWMH implemented in Dynare. We sampled

two chains with 10 million draws each and discarded the first half. Depending on the

scaling parameter configured and the resulting acceptance rate we observed that in some

cases the build-in convergence statistics did not indicate severe sampling issues. However,

in many cases it showed signs of possible non-convergence, whereas in general it might

be also difficult to judge whether the Brooks and Gelman (1998) statistics has already

settled due to the lack of a hard criterion. Furthermore, to conclude non-convergence

based on the Brooks and Gelman (1998) statistics one needs to draw a very large sample

due to the lack of a clear quantitative criterion which may be time consuming. We also

reduced the scaling parameter of the RWMH sampler in the hope to explore the funnel

better, yet sometimes it got completely stuck and the acceptance rate fell to zero.

In general, we can conclude that due to its characteristics the HMC algorithm is capa-

ble to provide researchers additional diagnostics based on the geometry of the posterior

likelihood function which may facilitate to uncover the sources of pathological densities.

3.2 A Small Scale New Keynesian Model

A basic DSGE model estimated in Herbst and Schorfheide (2015) is a slightly altered

version of the three equation textbook New Keynesian model (see e.g. in Clarida et al.

(1999)), including a government sector.18 It consists of a dynamic IS curve, a New Keyne-

sian Phillips curve and a Taylor-type monetary policy rule with interest rate smoothing.

Both the technology shock and government consumption is AR(1), the monetary policy

shock is iid. For further details we refer to the Appendix.

To estimate the model, three observables are used: GDP growth, inflation and the

18The model is similar to the one estimated in An and Schorfheide (2007) which differs from the
standard three equation New Keynesian model by assuming quadratic price adjustment à la Rotemberg
(1983) instead of the Calvo (1983) scheme and by adding a government sector to the model.
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nominal interest rate.19 The model has 13 structural parameters to be estimated. The

priors assumed are similar to those in Herbst and Schorfheide (2015) and are summarized

in the Appendix. For the estimation, we used 10 parallel chains with each 1,000 draws.

Due to the efficiency of HMC a burn-in of 500 draws is sufficient to ensure that the sampler

finds regions of high probability which is also confirmed by the diagnostics.

Table 1: Sampling Efficiency of the Hamiltonian Monte Carlo

Parameter Neff/N MCSE/SD Parameter Neff/N MCSE/SD

τ 89.37 % 1.05% ρr 65.70 % 1.23%
κ 91.06 % 1.05% ρg 94.94 % 1.03%
ψ1 74.18% 1.16% ρz 56.72% 1.33 %
ψ2 67.16% 1.22% 100σr 74.72 % 1.16%
r(A) 58.19% 1.31% 100σg 94.07 % 1.03%
π(A) 50.44 % 1.47 % 100σz 89.45 % 1.06 %
γ(Q) 55.57 % 1.34 % Log-Posterior 36.24 % 1.66 %

Notes: The table summarizes the efficiency of the HMC sampling. The first column (Neff/N) displays the
effective sample size divided by the total number of draws for the structural parameters of the Small Scale
DSGE model and its posterior in percentages (%). A higher number indicates more efficient sampling
for the respective parameter. The second column (MCSE/SD) contains the ratio of the Monte Carlo
standard error of the mean (MCSE) to the posterior standard deviation (SD), again in percentages (%).
Here a lower number indicates a more efficient sampling.

Table 1 shows the statistics describing the sampling efficiency of the HMC estimator

for each of the structural parameters and the log-posterior as well. Studying the numerical

diagnostics of the sampling efficiency two of the main advantages of the HMC algorithm

becomes visible: the high effective sample size and the high accuracy of the simulation of

the target density. Recall, the first is due to the greatly reduced autocorrelation of the

draws, introduced by the random variation in total energy, i.e. by the random variation

of the momentum. The latter is warranted by the smart application of the gradient to set

the trajectory in the phase space along the Hamiltonian, i.e. the Hamiltonian equations

ensure that all draws, after initial convergence, are from the target distribution.

This improvement in efficiency is one of the main reasons why we consider HMC as

19In this setup, we do not allow for any measurement error.
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a significant improvement for DSGE estimation. Herbst and Schorfheide (2015) report

the inefficiency factor, the inverse of Neff/N, for the relative risk aversion parameter (τ)

for the different RWMH algorithms. They point out that the RWMH algorithm suffers

from high inefficiency due to its high autocorrelation. To grasp the leap in efficiency,

the naive identity matrix based Metropolis proposal is as inefficient that ”100,000 draws

[...] is about as accurate as an approximation obtained from 5.5 iid draws” (Herbst and

Schorfheide, 2015, p.91.), while the standard, benchmark RWMH algorithm described in

Chapter 2 has an inefficiency that increases the effective sample size to 1,137.20 The

3-Block RWMH algorithm results in an equivalent of 2,440 iid draws. In comparison, the

effective sample size (Neff ) for 100,000 draws with HMC is 89,370 for the risk aversion

parameter (τ) which represents a 78.6 fold efficiency improvement over the standard, 1-

Block, and a 36.6 fold over the 3-Block RWMH algorithm. However, the efficiency gain

comes at a cost in terms of computational time, as the gradient has to be evaluated.

Another advantage of weakly autocorrelated draws is the potential to run fully inde-

pendent shorter chains in parallel, in other words, Stan based HMC is highly parallelizable.

The evaluation of the gradient and its computation for each transition is an increasingly

difficult task in the number of structural parameters. The C++ level integration of the

automated differentiation and the computational improvements discussed21 renders HMC

also for larger models feasible.22

Lastly, and probably most importantly, we highlight that due to the faster convergence

of the draws to the typical set we can abandon the practice of a mode-estimation before

20Herbst and Schorfheide (2015) report the inefficiency factor of 88 for the 1-Block RWMH algorithm
for the parameter τ . In terms of inefficiency, the HMC has a 1.12 inefficiency factor.

21See Technical Appendix.
22We also tried to run the estimation using a stock GPU, yet we did not experience any improvement,

in fact it was significantly slower than using a CPU. However, as regards GPU computing in Stan work
is in progress, see Ciglaric et al. (2020). By using high performance, specialized GPU hardware and due
to the propagation of higher CPU core counts we expect significant improvement in the computational
speed in the coming years, further advancing the applicability of HMC to estimate DSGE models.
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sampling. Potentially this improves the reliability of our estimation method in higher

dimensional models considerably, as discussed by Betancourt (2018).23

The second column of Table 1 reports the ratio of the Monte Carlo standard error

of the mean (MCSE) to the posterior standard deviation (SD). The former is related to

the accuracy of the simulation, the smaller the standard error, the closer the estimated

parameter value is to the true value. The latter measures total uncertainty around the

structural parameter. The ratio is considered to be small if it is below 5 percent, thus the

values around 1 percent are indicative of a highly efficient sampling.

Turning to the diagnostics of the sampling, we start with the number and properties

of divergent transitions.24 As discussed, divergent transitions occur when the approxi-

mated path calculated by the leapfrog integrator drifts completely away from the original

Hamiltonian path. Possible reasons could be a way too high curvature for the calibrated

step size or other irregularities in the posterior likelihood as cliffs or funnels. The exis-

tence of divergent transitions is a warning sign, however, the rejected transitions might

be also false positive. If they do not display a common pattern and are of a low pro-

portion, they can be neglected. From 10,000 draws we observed 18 divergent iterations,

approximately 0.2 percent. Due to their very low share and the lack of a systematic

pattern we can state that the results are to be trusted. Figure 7 plots the frequency of

divergent transitions against the log-posterior (lp ) in the top panel, and the acceptance

statistics (accept stat ) in the bottom panel. From the top panel we can see directly the

log-posterior distribution. It is worth noting that the divergent transitions are mostly in

the medium probability regions, and not in the high, indicating that any divergence could

23We are confident that future research will highlight the advantages of HMC in large DSGE models
with irregularly shaped posteriors.

24To visualize the diagnostics of the HMC method we used ShinyStan Version 3.0 (Gabry and Veen,
2020).
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Figure 7: Small Scale DSGE Diagnostics: Divergence Information

Notes: Plots of the divergent transitions (x-axis) against the log-posterior (y-axis top panel) and against
the acceptance statistic (y-axis bottom panel) of the HMC sampling algorithm.

be a false positive, i.e. divergent due to the numerical instability given the complexity of

the entire framework. The location of the divergent transitions can provide information

about which parts of the target distribution are difficult to sample from, albeit comparing

the two charts, we can conclude that the sampler explored the difficult regions of the

posterior. Turning to the bottom panel one might be cautious due to the high accep-

tance rate25. In general the intuition applies for HMC as well. If the acceptance rate

is very high it might be indicative of inefficient sampling26. To reject this possibility we

plot the marginal posterior distributions and the scatter plot of the acceptance rate and

25The acceptance rate refers to the intermediate Metropolis step in the HMC algorithm implemented
in Stan.

26As discussed in the previous subsection Stan allows to refine the sampler and set the target Metropolis
acceptance rate with a specific control option that adapts the step size based on the sampling during the
burn in phase.
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Figure 8: Small Scale DSGE Diagnostics: Acceptance Information

Notes: The figure plots the marginal posterior distribution of acceptance statistic (top left panel),
marginal posterior distribution of the log-posterior (top right panel), and the scatter plot of accep-
tance statistic (x-axis bottom panel) against the log-posterior (y-axis bottom panel). The vertical lines
indicate the mean (solid line) and median (dashed line). A bad plot would show a relationship between
the acceptance statistic and the log-posterior.

the log-posterior in Figure 8. It shows no relationship between the acceptance rate and

the log-posterior. In fact, it indicates that the posterior was adequately explored. This

leads us to the discussion of the energy distribution to assess the robustness of the HMC

algorithm, shown in Figure 9. It is desirable that the histograms are ”well-matched: [...]

The closer π∆E is to πE the faster the random walk explores the energies and the smaller

the autocorrelations will be in the chain” (Gabry and Veen, 2020). Figure 9 shows the

reason for the low autocorrelation, and thus the high efficiency of the HMC algorithm,

the energy levels, and with it the posterior-probability levels of the target distribution,

being well explored.
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Figure 9: Small Scale DSGE Diagnostics: Energy Distribution

Notes: These are plots of the overlaid histograms of the marginal energy distribution (πE) and the energy
transition distribution (π∆E). See Betancourt (2018) and Carpenter et al. (2017) for more details.

Lastly discussing the trace plot of the log-posterior we can visually inspect the sam-

pling behavior. Figure 10 shows that the chain explored the different parts of the pa-

rameter space. This applies to the other chains and structural parameters as well, all

indicating a proper sampling. Hence, the chains are mixing sufficiently well.

Figure 10: Small Scale DSGE Diagnostics: Trace Plot

Notes: The log-posterior of the draws from the Hamiltonian Monte Carlo are shown in blue. Divergent
transitions are marked on the x-axis with red lines.
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Turning to the structural parameter estimates, one can verify that the posterior es-

timates from HMC are identical to those obtained with the RWMH algorithm.27 This

verifies the proper functioning of the algorithm and shows that in small DSGE models

with simple target densities, RWMH sampling works sufficiently well.

Table 2: Posterior Estimates of the Small Scale DSGE Model

Hamiltonian Monte Carlo Random Walk Metropolis-Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

τ 2.43 [1.62, 3.35] 2.37 [1.58, 3.82]
κ 0.85 [0.62, 0.99] 0.85 [0.62, 0.98]
ψ1 1.95 [1.59, 2.34] 1.92 [1.55, 2.20]
ψ2 0.61 [0.21, 1.15] 0.60 [0.20, 1.21]
r(A) 0.42 [0.05, 0.90] 0.44 [0.05, 0.95]
π(A) 3.41 [2.79, 4.03] 3.38 [2.76, 3.80]
γ(Q) 0.60 [0.37, 0.83] 0.60 [0.37, 0.74]
ρr 0.81 [0.76, 0.85] 0.77 [0.71, 0.82]
ρg 0.98 [0.95, 1.00] 0.98 [0.95, 1.00]
ρz 0.93 [0.90, 0.97] 0.92 [0.88, 0.92]
100σr 0.19 [0.16, 0.20] 0.22 [0.18, 0.26]
100σg 0.67 [0.59, 0.78] 0.65 [0.57, 0.84]
100σz 0.19 [0.16, 0.23] 0.20 [0.16, 0.36]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the HMC
and the RWMH estimation, respectively. The results for HMC are based collectively on N = 10,000
draws from the posterior, obtained with 10 parallel chains, with a burn in of 500 draws and 1,000 sample
draws for each. The results for the RWMH algorithm are based on the authors’ replication of the table
reported in Herbst and Schorfheide (2015) using the original code available with 100,000 draws.

Now we turn to the detailed runtime analysis. As already pointed out, to ensure high-

quality sampling provided by the HMC algorithm, the gradient has to be evaluated which

requires additional computational time. To measure the overall gain in terms of effective

sample size, we benchmark the algorithm against the readily available, commonly used

software, Dynare. The standard mode search algorithm in Dynare, (mode compute=4), did

not manage to find an appropriate starting point for the RWMH algorithm. Therefore, we

had to revert to the Monte Carlo based optimization routine (mode compute=6). We draw

27Please note the slight difference in the posterior estimates and the different notation for the scaling
of the shock variances compared to Herbst and Schorfheide (2015).
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again 100,000 samples from the posterior and omit the first 20,000 draws. More than half

of the complete runtime was used for the mode search. We also run the HMC algorithm

for a little less than the amount of time needed to execute the RWMH algorithm, that

is, slightly less than 2 minutes 30 seconds. This resulted in 24,000 sample draws after

a warm-up of 1,000 draws.28 The advantage of our algorithm is that the verification

whether the actual sets of parameters along the Hamiltonian path imply a unique stable

solution can be switched off, if intended. In this case, the verification is not needed at

all, as constraining the parameter space in a smart way – e.g. one does not allowed that

the AR(1)-coefficients of the exogenous shocks become explosive and sets also the lower

bound for the response to inflation in the monetary policy rule to above unity – renders the

algorithm less complex and improves the runtime. For this small model the verification

deteriorates the runtime by approximately 30 percent on the given hardware. However,

there are indications that this loss might be in the ballpark of 10 percent for larger models

or longer data series. The efficient samples sizes are provided in the Table 3. To ensure

a coherent calculation of the effective sample size we stop considering autocorrelations at

the point when the sum of the autocorrelations of two subsequent lags becomes negative

to avoid noise. Table 3 shows that the effective sample sizes are far higher for the HMC

algorithm than for the RWMH, for many of the parameters it is way beyond one order

of magnitude, for some of them it is over 20 times higher. We acknowledge, however,

that with increasing sample sizes the difference will shrink as for this particular case the

mode search made up approximately 60 percent of the runtime. But even in that case

the difference would be substantial.

We also benchmark the algorithm on simulated data based on the parameters obtained

28We ran both algorithms on the same desktop computer with an Intel 13900k CPU (24 cores/32
threads). We run both algorithms in their optimal environment, that is, Dynare in Windows and HMC
in Linux.
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Table 3: Posterior Estimates and Effective Sample Sizes – Small Scale DSGE Model

HMC RWMH

Param. Mean ESS Mean ESS

τ 2.43 22112.2 2.39 1546.6
κ 0.85 14632.1 0.85 1090.9
ψ1 1.95 11751.2 1.95 1198.6
ψ2 0.61 18283.0 0.60 986.2
r(A) 0.42 16115.0 0.40 1229.8
π(A) 3.39 16748.1 3.41 1087.7
γ(Q) 0.59 15237.4 0.60 1169.4
ρr 0.81 16692.5 0.80 1121.1
ρg 0.98 22235.8 0.98 1051.5
ρz 0.93 10949.4 0.93 1285.2
100σr 0.19 21306.4 0.20 1148.7
100σg 0.68 21857.7 0.68 1010.2
100σz 0.19 20616.7 0.19 1221.5

Notes: The table shows the posterior mean and the effective sample sizes for the HMC and the RWMH
estimation, respectively. The results for HMC are based on 24,000 draws from the posterior after a burn
in of 1,000 sample draws. The results for the RWMH algorithm are based on the authors own code
in Dynare with 100,000 draws of which the first 20,000 draws were omitted. The runtime of the HMC
algorithm was 141 seconds and that of the RWMH algorithm 153 seconds, where from the latter one 5
seconds were already deduced to account for the calculation of the results.

above with 200 observations. For this purpose, we change the prior of the parameter κ –

which resulted in issues with the mode search in the above case – to a ∼ Beta(1.5, 1.5)

distribution with a moderate curvature. We draw 100,000 samples with a burn-in of 20,000

draws with the RWMH while in slightly less time with HMC we drew 5,500 samples after

a warm-up of 1,000 draws. The results are displayed in Table 4.

In this case HMC still samples far more efficiently than RWMH, however the difference

is smaller, as expected, because the standard mode search algorithm implemented for

the RWMH algorithm could be applied which takes only a few seconds to run. The

HMC algorithm can still generate a larger effective sample size up to a factor of over 6.

The results obtained from both algorithms correspond to each other, the differences are

marginal. Compared with the parameter values used for the generation of the data the

results obtained with both algorithms differ to a certain extent, however given that the
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Table 4: Posterior Estimates and Effective Sample Sizes with Simulated Data – Small
Scale DSGE Model

HMC RWMH

Param. Mean ESS Mean ESS

τ 2.53 6882.5 2.53 1302.5
κ 0.78 3602.2 0.78 2063.6
ψ1 1.60 3914.0 1.59 1239.0
ψ2 0.55 4813.7 0.54 1107.1
r(A) 0.35 2774.9 0.35 1840.9
π(A) 3.25 2750.5 3.25 1471.1
γ(Q) 0.50 2762.2 0.50 1355.0
ρr 0.76 6234.1 0.75 1288.3
ρg 0.97 4186.4 0.97 1413.3
ρz 0.89 4051.7 0.89 1287.1
100σr 0.20 6675.6 0.20 1080.4
100σg 0.69 6684.5 0.70 1277.1
100σz 0.22 6238.1 0.22 1291.5

Notes: The table shows the posterior mean and the effective sample sizes for the HMC and the RWMH
estimation, respectively. The results for HMC are based on 5,500 sample draws from the posterior after
a burn in of 1,000 draws. The results for the RWMH algorithm are based on the authors own code
in Dynare with 100,000 draws of which the first 20,000 draws were omitted. The runtime of the HMC
algorithm was 108 seconds and that of the RWMH algorithm 112 seconds, where from the latter one 5
seconds were already deduced to account for the calculation of the results.

data series consists only of 200 observations, this is little surprising.

3.3 Smets-Wouters Model

To explore the properties of HMC in a larger model we proceed with the estimation of

the SW model which is a medium-scale closed economy DSGE model. It has become

the standard workhorse model for economic policy analysis and served as a basis for

newer generations of DSGE models. We estimated the model with US data for the period

1960Q1–2004Q4 using seven key macroeconomic variables: real GDP, real consumption,

real investment, the GDP deflator, real wages, employment and the nominal short-term in-

terest rate.29 The model features a deterministic growth rate driven by labour-augmenting

29Both real consumption and investments are deflated using the GDP deflator. The hours variable
is defined as average weekly hours of all persons in the non-farm business sector times total civilian
employment. Originally in Smets and Wouters (2007) the model was estimated for the sample 1966Q1-
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technology progress and is subject to nominal and real frictions. Nominal rigidities af-

fect the labour and goods markets via Calvo pricing similar to Christiano et al. (2005).

Both wages and intermediate product markets are subject to partial indexation to lagged

inflation. The real frictions manifest themselves as investment adjustment and capital

utilization costs. Monetary policy follows a Taylor-type rule with interest rate smoothing

and a reaction to the inflation gap and the output gap.30

The exogenous variation of the model is driven by seven mostly AR(1) shock processes

with estimated conditional variances: standard total factor productivity, monetary policy,

investment specific technology, exogenous spending and risk premium and a wage and a

price markup shock with an additional MA(1) structure.31 The latter setup introduces

anticipated news shocks for both the regular and the wage Phillips curve. The model is

log-linearized around the steady state and net of deterministic growth rate.

We present the complete sampling diagnostics pertaining to the estimation of the SW

model using HMC in the Appendix. The efficiency of the HMC algorithm is apparent.

Even though we estimate the model with 1,000 draws only, it results in an effective sample

size of 418.92 for the log-posterior. We compared the estimates with those obtained by

the RWMH algorithm and present them in Table 5 and 6. We can conclude that both

algorithms deliver similar results.32 We failed to find any divergent transitions and the

results together with the HMC diagnostics seem to indicate that the target density of the

2004Q4, however e.g. Cai et al. (2021) also estimated the model starting from 1960Q1. Johannes Pfeiffer’s
replication package written in Dynare contains data from 1947.

30The inflation gap is defined as the deviation from the steady state inflation and the output gap is
the difference of output and its flexible price counterpart.

31The monetary policy shock is iid. To introduce anticipated news shocks we augment the model with
auxiliary state variables, similar to Dynare, so the Binder-Pesaran algorithm can be easily applied.

32The runtime for the HMC algorithm with N = 1,000 draws from the posterior and a burn in of 500
draws on a AMD Ryzen 3950x (16 cores/32 threads) CPU is approx. 1.5 to 2 hours (including a tuning
and warm-up time of 55-75 minutes). The runtime for the RWMH algorithm using Johannes Pfeiffer’s
replication files written in Dynare for two chains of 500,000 draws with a burn in of 100,000 draws on
the same computer is approx. 45 minutes per chain.
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Table 5: Posterior Estimates of the Smets-Wouters Model - Structural Parameters

HMC RWMH

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

φ 5.93 [4.38, 7.68] 5.90 [4.21, 7.56]
σc 1.41 [1.20, 1.66] 1.41 [1.16, 1.63]
h 0.73 [0.65, 0.80] 0.73 [0.66, 0.80]
ξw 0.75 [0.67, 0.84] 0.75 [0.67, 0.84]
σl 2.10 [1.21, 3.02] 2.12 [1.17, 3.03]
ξp 0.65 [0.56, 0.73] 0.65 [0.56, 0.73]
ιw 0.56 [0.35, 0.77] 0.57 [0.36, 0.77]
ιp 0.24 [0.11, 0.38] 0.23 [0.09, 0.36]
ψ 0.46 [0.30, 0.65] 0.46 [0.29, 0.64]
Φ 1.65 [1.53, 1.79] 1.64 [1.51, 1.77]
rπ 2.04 [1.77, 2.33] 2.04 [1.77, 2.30]
ρ 0.82 [0.77, 0.85] 0.82 [0.78, 0.86]
ry 0.10 [0.07, 0.14] 0.10 [0.07, 0.14]
rdy 0.21 [0.17, 0.25] 0.21 [0.16, 0.25]
π̄ 0.67 [0.50, 0.86] 0.67 [0.51, 0.83]
100(β−1 − 1) 0.13 [0.07, 0.22] 0.14 [0.06, 0.21]
l̄ 0.88 [-0.68, 2.45] 0.85 [-0.69, 2.37]
γ̄ 0.47 [0.43, 0.49] 0.47 [0.43, 0.50]
α 0.21 [0.18, 0.23] 0.21 [0.18, 0.24]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the HMC
and the RWMH estimation, respectively. The results for HMC are based on N = 1,000 draws from the
posterior and a burn in of 500 draws. The results for the RWMH algorithm are based on the authors’
replication of the model using Johannes Pfeiffer’s replication files written in Dynare with an acceptance
rate of approximately 30.5%, two chains of 500,000 draws and a burn in of 100,000 draws.

SW model is well behaved. The application of the RWMH algorithm should be warranted

as long as tight priors are assumed. However, a brief glance at the autocorrelation function

of certain parameters suggests that the sample suffers from slight autocorrelation. As

discussed, HMC is able to travel large distances in the parameter space and in the optimum

one should obtain an uncorrelated sample for each parameter. Slight autocorrelation per

se does not invalidate sampling, yet it is an indication for inefficient sampling for which

feature the reason is not apparent at first sight.

An evident idea to identify the reason for inefficient sampling is to start the auto-

matic tuning procedure from a different starting point than before. The gradient based
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Table 6: Posterior Estimates of the Smets-Wouters Model - Shock Processes

HMC RWMH

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

σa 0.48 [0.43, 0.52] 0.48 [0.43, 0.52]
σb 0.24 [0.19, 0.28] 0.24 [0.19, 0.29]
σg 0.52 [0.47, 0.57] 0.52 [0.47, 0.56]
σI 0.46 [0.38, 0.54] 0.46 [0.38, 0.53]
σr 0.23 [0.21, 0.25] 0.23 [0.21, 0.25]
σp 0.13 [0.10, 0.16] 0.13 [0.10, 0.16]
σw 0.25 [0.21, 0.28] 0.25 [0.22, 0.28]
ρa 0.98 [0.97, 0.99] 0.98 [0.97, 0.99]
ρb 0.27 [0.12, 0.48] 0.28 [0.10, 0.46]
ρg 0.97 [0.96, 0.99] 0.97 [0.96, 0.99]
ρI 0.69 [0.59, 0.78] 0.69 [0.60, 0.79]
ρr 0.17 [0.07, 0.28] 0.17 [0.06, 0.27]
ρp 0.96 [0.92, 0.99] 0.96 [0.94, 0.99]
ρw 0.97 [0.94, 0.99] 0.97 [0.95, 0.99]
µp 0.80 [0.66, 0.90] 0.80 [0.70, 0.92]
µw 0.89 [0.82, 0.94] 0.89 [0.83, 0.95]
ρga 0.57 [0.44, 0.70] 0.57 [0.44, 0.70]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the HMC
and the RWMH estimation, respectively. The results for HMC are based on N = 1,000 draws from the
posterior and a burn in of 500 draws. The results for the RWMH algorithm are based on the authors’
replication of the model using Johannes Pfeiffer’s replication files written in Dynare with an acceptance
rate of approximately 30.5%, two chains of 500,000 draws and a burn in of 100,000 draws.

approach is designed to navigate the chain to find the typical set. After starting the chain

from a different spot the HMC algorithm indeed found a further mode in spite of setting

tight priors and using the data sample 1960Q1-2004Q4. Cai et al. (2021) have already

documented that even if tight priors, identical to Smets and Wouters (2007), are set, yet

a shorter sample from 1960Q1 to 1991Q3 is used, it will lead to identification problems

as the data does not contain sufficient information to pin down properly a handful of

parameters. While Cai et al. (2021) document that the parameters h (habit persistence

in consumption), ιp (degree of price indexation), ρp (persistence of price markup shock)

and ρga (loading of government spending on technology shock innovations) exhibit a mul-

timodal pattern, our results in Table 7 suggest that several other parameters differ as
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Table 7: Posterior Estimates of the Smets-Wouters Model - Alternative Mode vs.
Original Mode

Alternative Original Alternative Original
Mode Mode Mode Mode

Mean [0.05, 0.95] Mean [0.05, 0.95] Mean [0.05, 0.95] Mean [0.05, 0.95]

φ 5.43 [3.76, 7.17] 5.93 [4.38, 7.68] α 0.21 [0.18, 0.24] 0.21 [0.18, 0.23]
σc 1.41 [1.18, 1.64] 1.41 [1.20, 1.66] σa 0.48 [0.44, 0.53] 0.48 [0.43, 0.52]
h 0.69 [0.58, 0.77] 0.73 [0.65, 0.80] σb 0.21 [0.15, 0.26] 0.24 [0.19, 0.28]
ξw 0.80 [0.73, 0.87] 0.75 [0.67, 0.84] σg 0.52 [0.47, 0.56] 0.52 [0.47, 0.57]
σl 2.13 [1.19, 3.12] 2.10 [1.21, 3.02] σI 0.45 [0.37, 0.53] 0.46 [0.38, 0.54]
ξp 0.80 [0.75, 0.85] 0.65 [0.56, 0.73] σr 0.23 [0.21, 0.25] 0.23 [0.21, 0.25]
ιw 0.52 [0.33, 0.72] 0.56 [0.35, 0.77] σp 0.21 [0.19, 0.24] 0.13 [0.10, 0.26]
ιp 0.31 [0.17, 0.48] 0.24 [0.11, 0.38] σw 0.23 [0.20, 0.27] 0.25 [0.21, 0.28]
ψ 0.40 [0.24, 0.56] 0.46 [0.30, 0.65] ρa 0.97 [0.96, 0.98] 0.98 [0.97, 0.99]
Φ 1.63 [1.50, 1.77] 1.65 [1.53, 1.79] ρb 0.41 [0.19, 0.68] 0.27 [0.12, 0.48]
rπ 1.97 [1.68, 2.26] 2.04 [1.77, 2.33] ρg 0.97 [0.96, 0.99] 0.97 [0.96, 0.99]
ρ 0.85 [0.82, 0.88] 0.82 [0.77, 0.85] ρI 0.71 [0.61, 0.80] 0.69 [0.59, 0.78]
ry 0.13 [0.08, 0.17] 0.10 [0.07, 0.14] ρr 0.13 [0.05, 0.22] 0.17 [0.07, 0.28]
rdy 0.22 [0.18, 0.27] 0.21 [0.17, 0.25] ρp 0.93 [0.89, 0.96] 0.96 [0.92, 0.99]
π̄ 0.67 [0.51, 0.83] 0.67 [0.50, 0.86] ρw 0.97 [0.93, 0.99] 0.97 [0.94, 0.99]
β̄ 0.14 [0.07, 0.24] 0.13 [0.07, 0.22] µp 0.98 [0.97, 0.99] 0.80 [0.66, 0.90]
l̄ 0.61 [-0.92, 2.05] 0.88 [-0.68, 2.45] µw 0.91 [0.85, 0.95] 0.89 [0.82, 0.94]
γ̄ 0.46 [0.43, 0.49] 0.47 [0.43, 0.49] ρga 0.57 [0.45, 0.70] 0.57 [0.44, 0.70]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the HMC
estimation. The results for HMC are based on N = 1,000 draws from the posterior and a burn in of 500
draws. β̄ is defined as 100(β−1 − 1), similarly to the baseline estimation.

well from those documented in the baseline estimation. In addition to further parameters

related to price and wage setting, e.g. ξp, ξw, σp, µp, there seems to be a significant differ-

ence in the estimates for φ (investment adjustment costs), ψ (capacity utilization costs)

and ρb (persistence of risk premium shock), at least if compared with the differences in the

estimates for the rest of the parameters.33 We also double checked our results obtained

with HMC by estimating the model using RWMH in Dynare and starting the estimation

from the mean of the parameter estimates from the alternative mode obtained with HMC.

The results obtained are fairly similar, see Appendix. Finally, in some cases we observed

33The results also hold up if we estimate the model on the original sample 1966Q1-2004Q4 used in
Smets and Wouters (2007).
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that using RWMH and running two parallel chains one of the chains swaps the mode and

remains there for the rest of the time. However, estimates obtained by averaging over the

entire sample from both chains are likely to be biased and therefore more sophisticated

methods are required. In general, it is noteworthy though that improved HMC diagnostics

could contribute to uncover irregularities in the posterior likelihood.

Policy implications

In this section we use the estimated modes to analyze the impulse responses to structural

shocks. We start by answering the question whether the two modes deliver different

monetary policy transmission as this model serves as the core of policy models widely

applied by central banks. Figure 11 plots the impulse responses of inflation, the policy rate

and output to a positive unanticipated monetary policy shock. Starting with the original

mode, we recover the result in Smets and Wouters (2007), that monetary policy leads to

a hump-shaped fall in inflation and output, both peaking at business cycle frequency, 5

quarters, and dying out after 20 quarters. In contrast, the impulse response functions

based on the estimates at the alternative mode show that the same shock has half the

impact on inflation and a third more on output. Furthermore, we wish to highlight that

the impulse responses of inflation and output feature higher persistence and lie outside

the 90 percent credible interval around the original mode. Hence, they are distinct in

line with the bimodality documented before. Figure 12 plots the impulse responses of the

same key variables to a positive price markup shock. It shows that a markup shock at the

alternative mode, dominated by its higher persistence and more pronounced anticipatory

character, turns deflationary after the initial impact, to which monetary policy responds

with an easing. The impulse response functions illustrate the different character of the

SW model at the two modes and highlight that the original results could have overstated
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Figure 11: Monetary Policy Shock

Notes: The impulse responses are obtained with the estimated model parameters at and around the
original mode and at the alternative, second mode. The figures plot the impulse response functions to
a monetary policy shock at the original mode in black together with the 5th and 95th percentiles of
the credible interval (CI) around it, based on the implicit assumption that only one mode exists. The
impulse response functions at the alternative mode are shown in blue where the magnitude of the standard
deviation of the shock was taken over from that in the original mode.

the impact of monetary policy. Figure 13 summarizes the historical contribution of the

Figure 12: Price Markup Shock

Notes: The impulse responses are obtained with the estimated model parameters at and around the
original mode and at the alternative, second mode. The figures plot the impulse response to a price
markup shock at the original mode in black together with the 5th and 95th percentiles of the credible
interval (CI) around it, based on the implicit assumption that only one mode exists. The impulse response
function at the alternative mode is shown in blue where the magnitude of the standard deviation of the
shock was taken over from that in the original mode.

various structural shocks to inflation and output. Chart (a) and (b) reflect the reduced

role of monetary policy and the increased role of markup shocks for inflation in the

seventies at the alternative mode. The alternative mode associates also diminished roles

to the markup shocks in the run up of the Great Recession. Chart (c) and (d) compare

the historical variance contributions of structural shocks to output at the original and

the alternative modes. The two charts paint a similar picture, except for the role of the

markup shocks past 1990, from where on in the alternative mode the contribution by both

markup shocks is smaller.
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Figure 13: Historical Variance Decompositions - Original vs. Alternative Mode

Inflation - Original Mode (a) Inflation - Alternative Mode (b)

Output - Original Mode (c) Output - Alternative Mode (d)

Notes: Chart (a) and (b) compare the historical variance decomposition of inflation in the original and
in the alternative mode while chart (c) and (d) that of output. Source: authors’ calculations.

4 Extension: Sequential Hamiltonian Monte Carlo

A main disadvantage of the HMC algorithm is that it fails to explore multimodal posterior

distributions, see e.g. Lan et al. (2014). To demonstrate this in a DSGE environment, we

borrow the stylized model from Herbst and Schorfheide (2014) in its original form:

yt = [1 1] st, st =

ϕ1 0

ϕ3 ϕ2

 st−1 +

1
0

 ϵt ϵt
iid∼ N(0, 1) (7)
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The structural parameters of the model to be estimated, θ1 and θ2, are mapped into the

reduced form parameters ϕ = [ϕ1, ϕ2, ϕ3] as follows:

ϕ1 = θ21, ϕ2 = (1− θ21), ϕ3 = θ1θ2 with 0 < θ1, θ2 < 1.

As discussed in Herbst and Schorfheide (2014), this setup creates a global identification

problem. The data generated by the parameter set θ̃1 =
√

1− θ21 and θ̃2 = θ1θ2/θ̃1 is

observationally equivalent to the data generated by θ = [θ1, θ2]. Setting θ = [0.55, 0.55]

results in an observationally equivalent parameter vector of approximately θ̃ = [0.84, 0.36]

where HMC mixes well. However, a larger distance and thereby veining support between

the two modes render HMC mixing poor. Setting θ = [0.45, 0.45] causes the chain stuck

either in the latter mode or in the observationally equivalent one, θ̃ = [0.89, 0.23]. We

also observed that notwithstanding starting from θ̃, the chain jumped sometimes to the

other mode, θ, during the warm-up and remained there for the rest of the simulation.

A further interesting experiment, which addresses criticism with respect to the original

estimation setup of the SW model, was carried out in Herbst and Schorfheide (2014).

They unrestrict the model by using uninformative or less informative priors with a larger

variance for the parameters instead of the tight priors set in Smets and Wouters (2007).

They allow thereby for the information to obtain a larger weight. Herbst and Schorfheide

(2014) reports a bimodal marginal posterior density for a handful of parameters once the

less restrictive prior setting is used in which case widely used MCMC based samplers as

the RWMH algorithm do not mix properly. Instead, they get stuck in one of the modes,

depending on the starting point of the chain. To remedy issues with multimodality several

algorithms have already been proposed, e.g. Neal (2001), Liu and Chen (1998), Gilks and

Berzuini (2002) and Del Moral et al. (2006). These papers mainly combine three different

algorithms: importance sampling and resampling, rejection sampling and Markov chain
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iterations. Chopin (2004) derives a central limit theorem for a large class of SMC sampling

methods. Herbst and Schorfheide (2014) carried out pioneering work by introducing the

SMC algorithm to DSGE models to remedy multimodality issues. The proposed SMC

framework therein fits into the scheme described by Chopin (2004) and is essentially a

sequential importance sampler. In each step the posterior density p(Y |θ)βnp(θ) at stage

n, at which the likelihood is weighted with 0 ≤ βn ≤ 1 ∀n ∈ {1, ..., N}, serves as a

proposal density for the density to be sampled from at the next stage, p(Y |θ)βn+1p(θ),

with βn+1 > βn. This framework is commonly referred to as likelihood tempering.34

Roughly speaking, at each stage n the importance weights {W (n)
j }Jj=1 for all parameter

draws {θ(n)j }Jj=1, that is, the fraction of the posterior densities at stage n + 1 and n

equaling to p(Y |θ(n))βn+1−βn , are multiplied with the weights from the stage before and

then normalized to serve as the weights for the importance sampling.35 The swarm of

parameter draws and weights {θ(n)j ,W
(n)
j }Jj=1 together at each stage are commonly referred

to as particles. At each stage the draws are ’mutated’, that means a new proposal

is potentially accepted when applying a MH-step, which is alternatively referred to as

’rejuvenation’. Once the variance of the weights becomes large the draws are resampled

using the calculated weights which are reset then to unity.

A main drawback of using the RWMH sampler to rejuvenate the parameter draws at

each stage is again that the MH-proposal θ′ is either too often rejected or the distance

||θ − θ′|| between the proposal and the current parameter draw is relatively small. In

case one targets an acceptance rate of 25 percent, the position of each particle, θ
(n)
j ,

will be updated only at each fourth stage on average. The intuition behind likelihood

34Alternatively, one can also carry out data tempering by increasing the number of observations in-
cluded to calculate the likelihood function at each stage n ∈ {1, ..., N}.

35For further details on the SMC algorithm we refer to Chopin (2004) and Herbst and Schorfheide
(2014).
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tempering is that decreasing βn, the weight of the likelihood function in the posterior

density, reduces the energy barrier between distant separated modes enabling commonly

applied MCMC samplers to move between modes. However, this feature can be only

exploited if the algorithm is able to traverse large distances in the parameter space. As

the HMC algorithm is capable of proposing updates θ′ to the current draws θ which are

distant and in theory always accepted, it can exploit this potential when βn is relatively

small. A key question in this context is, how large is the probability that the true

parameter vector θ lies in the region of the posterior density surrounding a particular

mode. This probability is measured by the volumes under the posterior density around a

particular mode, 1
Z

∫
θ∈Θi

p(Y |θ)p(θ)dθ. A potential issue if applying the RWMH algorithm

in the rejuvenation step is that particles will tend to get stuck in the same region around

the typical set where they started from at stage zero and could potentially bias the

estimation. With the number of particles approaching infinity this bias will have to

disappear even if particles were not rejuvenated at all, see e.g. the annealed importance

sampling by Neal (2001), as asymptotic convergence of these algorithms is warranted.

However, with increasing amount of parameters the number of particles necessary will

increase exponentially. Therefore, a guided approach to rejuvenate the actual parameter

draws might be of an advantage. The Sequential Hamiltonian Monte Carlo (SHMC)

algorithm has already been applied by Daviet (2018) to logit discrete choice models and

reports better convergence properties than the simple SMC method if a leave-one-out

approximation of the observed distribution of the particles is used in the correction step.

In our work we use the SMC framework proposed by Herbst and Schorfheide (2014) with

both multinomial and stratified resampling36. Algorithm 4 summarizes the main steps.

36For a detailed description of stratified resampling see Herbst and Schorfheide (2015). The aim of this
resampling scheme is to reduce the variation in the resampling step and to guarantee that particles with
high weights will always be resampled.

42



Algorithm 4 Sequential Hamiltonian Monte Carlo

1. Search for the different modes by starting the HMC algorithm from different pa-
rameter settings.

2. Specify a sequence {βn}Nn=0 with 1 = βN > ... > βn+1 > βn > ... > β0 ≥ 0 so that
the resulting bridging densities p(Y |θ(n))βnp(θ(n)) are not ’too different’

3. Tune the HMC sampler for each target density p(Y |θ(n))βnp(θ(n)) separately, de-

pending also on the possible position θ
(n)
j of a given particle {θ(n)j ,W

(n)
j } to be

rejuvenated, if necessary.

4. Run the SMC algorithm by applying the HMC algorithm to execute the rejuvena-
tion step and use always the pretuned sampler at each stage for the target distri-
bution p(Y |θ(n))βnp(θ(n)) depending on the current position θ

(n)
j of a given particle

{θ(n)j ,W
(n)
j }.

The algorithm fits into the scheme proposed by Chopin (2004), as already pointed out

by Daviet (2018).37 Therefore, under common regularity conditions and assuming that

multinomial resampling is used, almost sure convergence will hold:

1

J

J∑
j=1

h(θ
(n)
j )

a.s.→ Eπ̃n(h)∑J
j=1w

(n)
j h(θ

(n)
j )∑J

j=1w
(n)
j

a.s.→ Eπn(h)

1

J

J∑
j=1

h(θ̂
(n)
j )

a.s.→ Eπn(h)

where π̃n(· ) :=
∫
πn−1(θ

(n−1))k(n)(θ(n−1), · )dθ(n−1) with k(n) being the stochastic kernel

density function implied by the HMC algorithm. Furthermore, πn(θ
(n)) =

1

Zn

p(Y |θ(n))βnp(θ(n)),

w
(n)
j ∝ ν

(n)
j = πn(θ

(n−1)
j )/π̃n(θ

(n−1)
j ) and θ̂

(n)
j are the particle positions after resampling.

As HMC leaves πn−1 invariant, it follows that π̃n = πn−1, hence w
(n)
j = p(Y |θ(n−1)

j )βn−βn−1 .

Furthermore, the limit distribution is:

J1/2

{
1

J

J∑
j=1

h(θ̂
(n)
j )− Eπn(h)

}
D→ N (0, V̂n(h)) ∀n = 1, ..., N (8)

37For a complete proof of the central limit theorem for a large class of SMC methods see Chopin (2004),
while for DSGE models Herbst and Schorfheide (2014) provides an adjusted proof based on Chopin (2004).
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with V̂n(h) obtained recursively.

Ṽ0(h) = Varπ̃(0)
(h)

Ṽn(h) = V̂n−1(h) {Ekn(h)}+ Eπn−1(h)Varkn(h) ∀n = 1, ..., N

Vn(h) = Ṽn {νn · (h− Eπn(h))} ∀n = 1, ..., N

V̂n(h) = Vn(h) + Varπn(h) ∀n = 1, ..., N

To apply the algorithm we estimate again the SW model and loosen the priors in line with

Herbst and Schorfheide (2014). We use the same data set as for the estimation of the

restricted model. Before executing the algorithm the sampler has to be tuned. We use

N = 37 stages and J = 512 particles not to waste computational resources, which amount

is low if compared with SMC frameworks using RWMH for rejuvenation.38 Our aim is

to implement the algorithm in a way that it can be run on stock desktop computers.39

The tempering schedule {βn}Nn=1 was calibrated in a fashion that p(Y |θ)βnp(θ) serves

always sufficiently well as a proposal density for p(Y |θ)βn+1p(θ), hence the bridge densities

are never ’too different’. Even with such a small amount of stages and particles modes

are not absorbed highlighting the power of the SHMC estimator in the sense that the

rejuvenation step is guided. Figure 14 compares the tempering schedules: the solid line

shows the tempering schedule used for our SHMC framework and the dashed line the

original one from Herbst and Schorfheide (2014) if applied to N = 37 stages. At the

low end the tempering schedules correspond while after approximately one quarter the

schedule used by Herbst and Schorfheide (2014) starts to increase more rapidly. As a

comparison we also plotted the schedule from Herbst and Schorfheide (2014) with λ = 2.75

which provides a better approximation of the schedule used for our framework. Using the

38For example Herbst and Schorfheide (2014) uses J = 12, 000 particles and N = 500 stages.
39In this setup, the runtime of the algorithm amounts to approximately one day on a stock desktop

computer equipped with an AMD Ryzen 3950x (16 cores/32 threads) CPU.
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Figure 14: Tempering Schedule

Notes: The solid line shows the tempering schedule used for the estimation. The dashed line shows the
tempering schedule if βn = ((n− 1)/(N − 1))λ with λ = 2.1 and the dotted line if λ = 2.75.

HMC sampler there is no need to increase the tempering schedule as rapidly due to

the better sampling properties at higher βn values which allows the particle positions to

remain at lower βn levels and to mix between the modes for a longer time. However, one

should notice that already at relatively low βn levels mixing is not optimal in the sense

that it does not switch often enough between modes. As βn increases, less information can

be extracted from the density with respect to the ratio of the volumes under the modes

by moving the particles in the parameter space, yet one can obtain more information

with respect to the exact shape of the modes. Another difference if compared with the

tempering schedule used by Herbst and Schorfheide (2014) is that while the latter starts

with a draw from the prior distribution our initial sampling stems from a slightly informed

distribution π0 := p(Y |θ)β0p(θ) with β0 = 0.005, where the HMC sampler is able to

mix between the modes. β0 = 0.005 implies that the latter initial distribution contains

approximately the same amount of information which would be provided by one single

data point from the data sample 1960Q1-2004Q4 used for this estimation. To create our

initial sample, we simulated 10,000 sample draws from π0. Afterwards we thinned the

obtained sample and used each consecutive tenth sample draw. In our initial samples
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obtained approximately 14 percent of the particles were from the region around the mode

which seems to be dominated and to encompass less volume. The latter setup appears to

be also in line with existing final results from the literature, see e.g Herbst and Schorfheide

(2014) and Lanne and Luoto (2018). The latter work augments the SMC algorithm with

non-sequential importance sampling and finds that the portion of the particles stemming

from the region around the dominated mode amounts to 20 percent while Herbst and

Schorfheide (2014) reports approximately 5 percent. We also applied the criterion used in

Herbst and Schorfheide (2014) to decide whether to resample at a given stage n, yet we

resample when the effective sample size (ESS) drops below 0.7, instead of 0.5. In practice,

our algorithm resamples mostly at each second stage.40

We performed the estimation using both multinomial and stratified resampling. Our

estimation results suggest that the posterior density for a handful of parameters is ill-

behaved. We find in line with Herbst and Schorfheide (2014) and Lanne and Luoto

(2018) that the joint kernel density estimates of the parameters ρp and µp, the ARMA(1,1)

terms in the exogenous shock process of the Phillips-curve, is bimodal as illustrated in

Figure 15.41 In our estimations we obtain that on average approximately 12 percent of

the particles are concentrated in the area around the dominated mode if multinomial

resampling is applied while the latter share amounts to approximately 9.3 percent if

stratified resampling is used. Hence, based on the average the probability that the data

was generated by the parameter estimates from the dominated mode is roughly 10 percent

which result lies between the shares reported in Herbst and Schorfheide (2014) and Lanne

and Luoto (2018), 5 percent and 20 percent, respectively. Furthermore, we also observe

similar bimodality for the joint density of the MA(1) term and the standard deviation of

40Alternatively, we could have resampled deterministically at each second stage as a resampling at the
third consecutive stage occurred rather rarely.

41For the scatter plots with the sample draws see Appendix.
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Figure 15: Sequential Hamiltonian Monte Carlo - Joint Posterior Kernel Density
Estimates

Notes: The plot shows the joint posterior kernel density estimates of the following parameters: [ρp,µp]
(upper left), [σp,µp] (upper right), [ρw,ξw] (lower left) and [µw,ρw] (lower right). Sample size equals
to 1,024, where two sample draws of the size J = 512, respectively, were merged, the first obtained by
applying multinomial resampling, the second one by stratified resampling. The divergence rate at the last
stage, βN = 1, was approximately 0.2 percent and 0.4 percent, respectively, while the overall divergence
rate throughout all N = 37 stages amounted to approximately 3.8 and 3.7 percent for both samples.
Scatter plots with the original sample draws are shown in the Appendix. Source: authors’ simulations
and calculations.

the error term, σp. The parameters determining the wage Phillips curve, ξw and ρw, the

wage rigidity parameter and the AR(1) term of the markup shock process also exhibit

a bimodal pattern, yet both modes are rather stretched out in length. The joint kernel

density of ξw and the MA(1) coefficient of the wage markup shock, µw, is shaped similarly

as the joint density of [ξw, ρw]. The reason for this feature is that ρw and µw are highly

correlated. The joint kernel density exhibits a long ridge along the 45° line which implies

that the markup shock process is overparameterized as also suggested by Lanne and Luoto
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(2018)42. It is worth to note that the divergence rate at the last stage, when βN = 1, was

approximately 0.2 percent and 0.4 percent, respectively, while the overall divergence rate

throughout all N = 37 stages amounted to approximately 3.8 and 3.7 percent for both

samples. The divergence rate for low values of βn was relatively higher implying that

the posterior densities at low βn values exhibit irregularities and might be challenging

to sample from. However, it might be very difficult to remedy the latter issue as these

irregularities could be also caused by the energy barrier between two modes.

In general we can conclude that by combining the HMC estimator with SMC we

obtain a powerful tool which allows for the estimation of complex and ill-behaved posterior

densities and delivers results in line with existing literature.

5 Conclusion and Outlook

In this paper we review the benchmark DSGE estimation framework and present an ad-

vanced alternative, the HMC sampler, which is widely used in other fields of academic

research. Subsequently, we implement the HMC algorithm for DSGE models in Stan, a

state-of-the-art, high-performance software package which has become a workhorse devel-

opment environment for Bayesian estimation. We use the HMC to estimate a small-scale

three-equation textbook New Keynesian model and the SW model. We find that in par-

ticular cases the HMC algorithm provides a twenty-fold improvement in speed over the

RWMH algorithm. Our estimation results correspond to those in the existing literature,

which verifies the accuracy of the estimation method used and the algorithm implemented.

In addition, we present the sampling diagnostics in detail, which enables us to conclude

that the target density of the three-equation textbook model exhibits a regular shape.

42Lanne and Luoto (2018) also reported that restricting the model could result in an improved fit.
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We confirm that the RWMH algorithm also operates adequately in this case. For the SW

model, however, we found a second mode after the advanced HMC diagnostics exhibited

signs of inefficient sampling, even though this estimation was carried out using the original

priors and data set. We therefore wish to highlight the fact that advanced sampling diag-

nostics for the HMC helps identify irregularities in the posterior and parameters that are

difficult to sample. Furthermore, we would like to stress that the HMC does not require

any posterior mode search, which is a major benefit when compared with the commonly

used RMWH algorithm. Finally, we combine the HMC with the SMC algorithm to ad-

dress a key shortcoming of the HMC, namely that it fails to explore ill-behaved posterior

densities properly. We apply this extended framework to estimate the SW model using

less informative priors and obtain bimodal posterior densities, whose results are consis-

tent with those in the existing literature. However, we acknowledge that there is scope to

improve the runtime of the algorithm.

Given our results, we believe that the superior sampling properties and diagnostics

unique to the HMC will provide new opportunities to revisit existing DSGE model estima-

tion exercises. Furthermore, its ability to cope with high-dimensional distributions should

make it possible to directly sample the state vector. This would enable us to estimate

the model without applying the Kalman filter and hence use shocks other than normally

distributed ones. We are also hopeful that additional sophisticated gradient-based es-

timation methods optimally capable of handling multimodality – such as the wormhole

HMC – can be implemented for DSGE estimation as the computational power available

today should render these algorithms feasible. At the same time, it should be noted that

the latter approach would provide only a numerical solution to multimodality – similarly

to the SHMC algorithm – although this issue is of a fundamental nature. We leave these
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topics for future research.
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A Small Scale New Keynesian Model

The model can be summarized by the following equations:43

ŷt = Et[ŷt+1]−
1

τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1]

)
+ ĝt − Et[ĝt+1] (A.1)

π̂t = βEt[π̂t+1] + κ(ŷt − ĝt) (A.2)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2(ŷt − ĝt) + ϵR,t (A.3)

ĝt = ρgĝt−1 + ϵg,t (A.4)

ẑt = ρgẑt−1 + ϵz,t (A.5)

To estimate the model, three observables are used: GDP growth, inflation and the nominal

interest rate. These are linked to the state equations as follows:

Y GRt =γ
(Q) + 100(ŷt − ŷt−1 + ẑt) (A.6)

INFLt =π
(A) + 400π̂t (A.7)

INTt =π
(A) + 4γ(Q) + 400R̂t (A.8)

In this setup, we do not allow for any measurement error. The small scale model thus has

13 structural parameters to be estimated:

θ = [τ, κ, ψ1, ψ2, ρr, ρg, ρz, σr, σg, σz, r
A, πA, γQ] (A.9)

The priors we assume are similar to those used in Herbst and Schorfheide (2015) and are

summarized in the table below.

43For further details we direct the reader to Herbst and Schorfheide (2015), pp.15-28.
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Table A.1: Prior Distributions

Name Domain Distribution Parameter 1 Parameter 2

τ [0,∞) Gamma 2.00 0.50
κ [0,1) Uniform 0.00 1.00
ψ1 [0,∞) Gamma 1.50 0.25
ψ2 [0,∞) Gamma 0.50 0.25
r(A) [0,∞) Gamma 0.50 0.50
π(A) [0,∞) Gamma 7.00 2.00
γ(Q) (-∞,∞) Normal 0.40 0.20
ρr [0,1) Uniform 0.00 1.00
ρg [0,1) Uniform 0.00 1.00
ρz [0,1) Uniform 0.00 1.00
100σr [0,∞) Inv. Gamma 0.40 4.00
100σg [0,∞) Inv. Gamma 1.00 4.00
100σz [0,∞) Inv. Gamma 0.50 4.00

Notes: For the Beta, Gamma and Normal distribution Parameter 1 and Parameter 2 stands for the
mean and the standard deviation. For the Uniform distribution the parameters define the bounds of the
interval. For the Inverse Gamma distribution they correspond to parameters s and ν, where pIG(σ) ∝
σ−ν−1e−νs2/2σ2

. See also Herbst and Schorfheide (2015).
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B Smets-Wouters Model: Alternative Mode Com-

parison

Table B.1: Posterior Estimates of the Smets-Wouters Structural Parameters -
Alternative Mode

Hamiltonian Monte Carlo Random Walk Metropolis Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

φ 5.43 [3.76, 7.17] 5.46 [3.67, 7.23]
σc 1.41 [1.18, 1.64] 1.40 [1.17, 1.64]
h 0.69 [0.58, 0.77] 0.69 [0.60, 0.79]
ξw 0.80 [0.73, 0.87] 0.80 [0.74, 0.87]
σl 2.13 [1.19, 3.12] 2.14 [1.20, 3.04]
ξp 0.80 [0.75, 0.85] 0.80 [0.75, 0.85]
ιw 0.52 [0.33, 0.72] 0.52 [0.32, 0.72]
ιp 0.31 [0.17, 0.48] 0.31 [0.16, 0.46]
ψ 0.40 [0.24, 0.56] 0.40 [0.23, 0.56]
Φ 1.63 [1.50, 1.77] 1.63 [1.50, 1.76]
rπ 1.97 [1.68, 2.26] 1.96 [1.68, 2.23]
ρ 0.85 [0.82, 0.88] 0.85 [0.82, 0.89]
ry 0.13 [0.08, 0.17] 0.13 [0.08, 0.17]
rdy 0.22 [0.18, 0.27] 0.22 [0.18, 0.26]
π̄ 0.67 [0.51, 0.83] 0.67 [0.51, 0.83]
100(β−1 − 1) 0.14 [0.07, 0.24] 0.14 [0.06, 0.23]
l̄ 0.61 [-0.92, 2.05] 0.56 [-0.92, 2.00]
γ̄ 0.46 [0.43, 0.49] 0.46 [0.44, 0.50]
α 0.21 [0.18, 0.24] 0.21 [0.18, 0.24]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the HMC
and the RWMH estimation, respectively. The results for HMC are based on N = 1,000 draws from the
posterior and a burn in of 500 draws. The results for the RWMH algorithm are based on the authors’
replication of the model using Johannes Pfeiffer’s replication files using Dynare with an acceptance rate
of 31.2%, two chains of 500,000 draws and a burn in of 100,000 draws. Thus the resulting number of
draws is 800,000.
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Table B.2: Posterior Estimates of the Smets-Wouters Model’s Shock Processes -
Alternative Mode

Hamiltonian Monte Carlo Random Walk Metropolis Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

σa 0.48 [0.44, 0.53] 0.48 [0.43, 0.53]
σb 0.21 [0.15, 0.26] 0.21 [0.14, 0.27]
σg 0.52 [0.47, 0.56] 0.52 [0.47, 0.56]
σI 0.45 [0.37, 0.53] 0.45 [0.38, 0.52]
σr 0.23 [0.21, 0.25] 0.23 [0.21, 0.25]
σp 0.21 [0.19, 0.24] 0.21 [0.18, 0.24]
σw 0.23 [0.20, 0.27] 0.23 [0.20, 0.27]
ρa 0.97 [0.96, 0.98] 0.97 [0.96, 0.99]
ρb 0.41 [0.19, 0.68] 0.41 [0.17, 0.69]
ρg 0.97 [0.96, 0.99] 0.97 [0.96, 0.99]
ρI 0.71 [0.61, 0.80] 0.71 [0.61, 0.81]
ρr 0.13 [0.05, 0.22] 0.13 [0.04, 0.22]
ρp 0.93 [0.89, 0.96] 0.93 [0.89, 0.96]
ρw 0.97 [0.93, 0.99] 0.97 [0.94, 0.99]
µp 0.98 [0.97, 0.99] 0.98 [0.97, 1.00]
µw 0.91 [0.85, 0.95] 0.91 [0.86, 0.96]
ρga 0.57 [0.45, 0.70] 0.57 [0.44, 0.70]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the HMC
and the RWMH estimation, respectively. The results for HMC are based on N = 1,000 draws from the
posterior and a burn in of 500 draws. The results for the RWMH algorithm are based on the authors’
replication of the model using Johannes Pfeiffer’s replication files using Dynare with an acceptance rate
of 31.2%, one two chains of 500,000 draws and a burn in of 100,000 draws. Thus the resulting number of
draws is 800,000.
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Figure B.1: Historical Variance Decomposition of Inflation in the Smets-Wouters Model
at the Original Mode

Figure B.2: Historical Variance Decomposition of Inflation in the Smets-Wouters Model
at the Alternative Mode
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Figure B.3: Historical Variance Decomposition of Output in the Smets-Wouters Model
at the Original Mode

Figure B.4: Historical Variance Decomposition of Output in the Smets-Wouters Model
at the Alternative Mode
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C Smets-Wouters Model: Hamiltonian Monte Carlo

Estimation Diagnostics

Smets-Wouters Model: Diagnostics for Original Mode Estimation

Warnings

[1] "None of the 1000 iterations ended with a divergent transition."

Numerical diagnostics

n_eff Rhat mean se_mean sd

log-posterior 418.92 1.00 -1191.70 0.22 4.59

crpi 1163.52 1.00 2.04 0.00 0.17

crdy 1765.21 1.00 0.21 0.00 0.03

cry 941.05 1.00 0.10 0.00 0.02

crr 995.36 1.01 0.82 0.00 0.02

constelab 1377.36 1.00 0.88 0.03 0.95

constepinf 1071.22 1.00 0.67 0.00 0.10

ctrend 497.64 1.00 0.47 0.00 0.02

constebeta 1084.42 1.00 0.13 0.00 0.05

cgy 1285.63 1.00 0.57 0.00 0.08

cmaw 1015.16 1.00 0.89 0.00 0.04

cmap 532.57 1.01 0.80 0.00 0.08

calfa 1438.32 1.00 0.21 0.00 0.02

czcap 950.76 1.00 0.46 0.00 0.10
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csadjcost 892.60 1.00 5.93 0.03 1.01

csigma 730.47 1.00 1.42 0.01 0.14

chabb 1010.00 1.00 0.73 0.00 0.04

cfc 846.70 1.00 1.65 0.00 0.08

cindw 1275.43 1.00 0.57 0.00 0.13

cprobw 632.40 1.00 0.75 0.00 0.05

cindp 867.03 1.00 0.23 0.00 0.09

cprobp 433.91 1.00 0.65 0.00 0.05

csigl 1523.58 1.00 2.10 0.01 0.55

crhoa 754.90 1.00 0.98 0.00 0.01

crhob 498.21 1.00 0.27 0.00 0.11

crhog 1115.33 1.00 0.97 0.00 0.01

crhoqs 775.30 1.00 0.69 0.00 0.06

crhoms 1309.81 1.00 0.17 0.00 0.06

crhopinf 370.24 1.00 0.96 0.00 0.02

crhow 415.38 1.00 0.97 0.00 0.01

sigmaea 952.76 1.00 0.48 0.00 0.03

sigmaeb 665.30 1.00 0.24 0.00 0.03

sigmaeg 1332.55 1.00 0.52 0.00 0.03

sigmaeqs 988.35 1.00 0.46 0.00 0.05

sigmaem 1140.80 1.00 0.23 0.00 0.01

sigmaepinf 865.82 1.00 0.13 0.00 0.02

sigmaew 1255.44 1.00 0.25 0.00 0.02
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Visual diagnostics

Divergence Information

These are plots of the divergent transition status (x-axis) against the log-posterior (y-axis

top panel) and against the acceptance statistic (y-axis bottom panel) of the sampling

algorithm for all chains. Divergent transitions can indicate problems for the validity of

the results. A good plot would show no divergent transitions. If the divergent transitions

show the same pattern as the non-divergent transitions, this could indicate that the diver-

gent transitions are false positives. A bad plot would show systematic differences between

the divergent transitions and non-divergent transitions. For more information see https:

//mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup.

Figure C.1: Log-posterior and acceptance statistics
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Energy

These are plots of the overlaid histograms of the marginal energy distribution (πE) and

the energy transition distribution (π∆E) for all chains. A good plot shows histograms

that look well-matched indicating that the Hamiltonian Monte Carlo should perform

robustly. The closer π∆E is to πE the faster the random walk explores the energies and

the smaller the autocorrelations will be in the chain. If π∆E is narrower than πE the

random walk is less effective and autocorrelations will be larger. Additionally the chain

may not be able to completely explore the tails of the target distribution. See Betancourt

‘A conceptual introduction to Hamiltonian Monte Carlo’ and Betancourt ‘Diagnosing

suboptimal cotangent disintegrations in Hamiltonian Monte Carlo’ for the general theory

behind the energy plots.

1

−20 0 20

E − E

πE

π∆E
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Treedepth Information

These are plots of the treedepth (x-axis) against the log-posterior (y-axis top left panel)

and against the acceptance statistic (y-axis top right panel) of the sampling algorithm for

all chains. In these plots information is given concerning the efficiency of the sampling

algorithm. Zero treedepth can indicate extreme curvature and poorly-chosen step size.

Treedepth equal to the maximum treedepth might be a sign of poor adaptation or of a dif-

ficult posterior from which to sample. The former can be resolved by increasing the warm-

up time, the latter might be mitigated by reparameterization. For more information see

https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded or https:

//mc-stan.org/docs/reference-manual/hmc-algorithm-parameters.html.
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Step Size Information

These are plots of the integrator step size per chain (x-axis) against the log-posterior

(y-axis top panel) and against the acceptance statistic (y-axis bottom panel) of the sam-

pling algorithm. If the step size is too large, the integrator will be inaccurate and too

many proposals will be rejected. If the step size is too small, the many small steps lead

to long simulation times per interval. Thus the goal is to balance the acceptance rate

between these extremes. Good plots will show full exploration of the log-posterior and

moderate to high acceptance rates for all chains and step sizes. Bad plots might show

incomplete exploration of the log-posterior and lower acceptance rates for larger step sizes.
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Acceptance Information

These are plots of the acceptance statistic (top left panel), the log-posterior (top right

panel), and, the acceptance statistic (x-axis bottom panel) against the log-posterior (y-

axis bottom panel) for all chains. The vertical lines indicate the mean (solid line)

and median (dashed line). A bad plot would show a relationship between the accep-

tance statistic and the log-posterior. This might be indicative of poor exploration of

parts of the posterior which might be mitigated by reparameterization or adaptation

of the step size. If many proposals are rejected the integrator step size might be too

large and the posterior might not be fully explored. If the acceptance rate is very

high this might be indicative of inefficient sampling. The target Metropolis acceptance

rate can be set with the adapt delta control option. For more information see https:

//mc-stan.org/docs/reference-manual/hmc-algorithm-parameters.html.
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Scatter plots

These are scatter plots of crpi, crdy, cry, crr, constelab, constepinf, ctrend, constebeta, cgy,

cmaw, cmap, calfa, czcap, csadjcost, csigma, chabb, cfc, cindw, cprobw, cindp, cprobp,

csigl, crhoa, crhob, crhog, crhoqs, crhoms, crhopinf, crhow, sigmaea, sigmaeb, sigmaeg,

sigmaeqs, sigmaem, sigmaepinf, sigmaew, plotted against log-posterior. The red dots,

if present, indicate divergent transitions. Divergent transitions can indicate problems for

the validity of the results. A good plot would show no divergent transitions. A bad

plot would show divergent transitions in a systematic pattern. For more information see

https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup.
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Autocorrelation

These are autocorrelation plots of crpi, crdy, cry, crr, constelab, constepinf, ctrend, conste-

beta, cgy, cmaw, cmap, calfa, czcap, csadjcost, csigma, chabb, cfc, cindw, cprobw, cindp,

cprobp, csigl, crhoa, crhob, crhog, crhoqs, crhoms, crhopinf, crhow, sigmaea, sigmaeb,

sigmaeg, sigmaeqs, sigmaem, sigmaepinf, sigmaew. The autocorrelation expresses the

dependence between the samples of a Monte Carlo simulation. With higher dependence

between the draws, more samples are needed to obtain the same effective sample size.

High autocorrelation can sometimes be remedied by reparameterization of the model.
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czcap
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Trace Plots

These are trace plots of crpi, crdy, cry, crr, constelab, constepinf, ctrend, constebeta, cgy,

cmaw, cmap, calfa, czcap, csadjcost, csigma, chabb, cfc, cindw, cprobw, cindp, cprobp,

csigl, crhoa, crhob, crhog, crhoqs, crhoms, crhopinf, crhow, sigmaea, sigmaeb, sigmaeg,

sigmaeqs, sigmaem, sigmaepinf, sigmaew. Trace plots provide a visual way to inspect sam-

pling behavior and assess mixing across chains. The iteration number (x-axis) is plotted

against the parameter value at that iteration (y-axis). Divergent transitions are marked

on the x-axis. A good plot shows chains that move swiftly through the parameter space

and all chains that explore the same parameter space without any divergent transitions.

A bad plot shows chains exploring different parts of the parameter space, this is a sign of

non-convergence. If there are divergent transitions, looking at the parameter value related

to these iterations might provide information about the part of the parameter space that

is difficult to sample from. Slowly moving chains are indicative of high autocorrelation or

small integrator step size, both of which relate to ineffective sampling and lower effective

sample sizes for the parameter.
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Smets-Wouters Model: Diagnostics for Alternative Mode Estimation

Warnings

[1] "None of the 1000 iterations ended with a divergent transition."

Numerical diagnostics

n_eff Rhat mean se_mean sd

log-posterior 365.59 1.00 -1199.89 0.23 4.31

crpi 892.49 1.00 1.97 0.01 0.17

crdy 942.12 1.00 0.22 0.00 0.03

cry 1194.44 1.00 0.13 0.00 0.03

crr 868.04 1.00 0.85 0.00 0.02

constelab 846.38 1.00 0.61 0.03 0.91

constepinf 922.57 1.00 0.67 0.00 0.10

ctrend 710.82 1.00 0.46 0.00 0.02

constebeta 962.80 1.00 0.14 0.00 0.05

cgy 1213.01 1.00 0.57 0.00 0.08

cmaw 642.98 1.00 0.91 0.00 0.03

cmap 805.75 1.01 0.98 0.00 0.01

calfa 1054.77 1.00 0.21 0.00 0.02

czcap 898.15 1.00 0.40 0.00 0.10

csadjcost 704.09 1.00 5.43 0.04 1.04

csigma 562.87 1.00 1.41 0.01 0.14

chabb 482.26 1.00 0.69 0.00 0.06
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cfc 889.32 1.00 1.63 0.00 0.08

cindw 1312.51 1.00 0.52 0.00 0.12

cprobw 470.28 1.00 0.80 0.00 0.04

cindp 1131.00 1.00 0.31 0.00 0.09

cprobp 788.72 1.01 0.80 0.00 0.03

csigl 1284.08 1.00 2.13 0.02 0.60

crhoa 728.30 1.00 0.97 0.00 0.01

crhob 385.27 1.00 0.41 0.01 0.15

crhog 609.54 1.00 0.97 0.00 0.01

crhoqs 651.13 1.00 0.71 0.00 0.06

crhoms 902.99 1.00 0.13 0.00 0.06

crhopinf 1005.06 1.00 0.93 0.00 0.02

crhow 359.52 1.00 0.97 0.00 0.02

sigmaea 1259.12 1.00 0.48 0.00 0.03

sigmaeb 456.17 1.00 0.21 0.00 0.04

sigmaeg 1121.21 1.00 0.52 0.00 0.03

sigmaeqs 806.33 1.00 0.45 0.00 0.05

sigmaem 1155.58 1.00 0.23 0.00 0.01

sigmaepinf 1240.97 1.00 0.21 0.00 0.02

sigmaew 930.52 1.00 0.23 0.00 0.02
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Small Scale NK-Model: Hamiltonian Monte Carlo Estimation Effective Sam-

ple Sizes

Table C.1: Posterior Estimates of an Overspecified Small Scale NK-DSGE Model with
Generated Data

Parameters ρu = 0, µu = 0 µu = 0 No restriction

τ 1158 590 989
κ 534 640 762
ψ1 889 349 514
ψ2 567 358 528
ρr 1025 509 906
ρg 833 800 157
ρz 913 578 78
r(A) 252 322 513
π(A) 272 306 338
γ(Q) 333 229 542
100σr 902 677 987
100σg 1111 630 1064
100σz 782 737 575
ρug - - 221
ρuz - - 93
µug - 1023 673
µuz - 323 122

Notes: Effective sample sizes for 1,000 draws obtained by applying HMC to the small scale NK-DSGE
model from Herbst and Schorfheide (2015) with 200 simulated data points where the error term is
generated by an iid process. The first column shows results if the error terms for the exogenous
processes g and z are modeled as white noise, the second column if as an MA(1) and the third column if
ARMA(1, 1).
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D Sequential Hamiltonian Monte Carlo Estimation:

Smets-Wouters Model

Figure D.1: Sequential Hamiltonian Monte Carlo - Joint Posterior Scatter Plots

Notes: The figure shows the joint posterior scatter plots of the following parameters: [ρp,µp] (upper
left), [σp,µp] (upper right), [ξw,ρw] (lower left) and [ρw,µw] (lower right). Sample size equals to 1,024,
where two sample draws of the size J = 512, respectively, were merged, the first obtained by applying
multinomial resampling, the second one by stratified resampling. The divergence rate at the last stage,
βn = 1, was approximately 0.2 percent and 0.4 percent, respectively, while the overall divergence rate
throughout all N = 37 stages amounted to approximately 3.8 and 3.7 percent for both samples. Source:
authors’ simulations.
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E Technical Appendix

Hamiltonian Monte Carlo: Methodology and Applica-

tion to Linearized DSGE Models

E.1 Bayesian Estimation of DSGE Models: A Brief Review

In this chapter we briefly review the main estimation framework used for MCMC-type

Bayesian DSGE model estimation. A more extensive treatment can be found in the

excellent work of Herbst and Schorfheide (2015).

In order to estimate a Bayesian model, the first step is to specify the joint distribution

of the data and the model parameters P (θ, Y ), represented by the corresponding density

function p(θ, Y ). Throughout this appendix distributions are represented by their density

functions. The aim is to obtain the posterior density, that is, the density function of

the model parameters given the data, denoted by p(θ|Y ) which can be expressed by the

means of Bayes’ rule as follows:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

(E.1)

p(Y |θ) is referred to as the likelihood function and p(θ) is the density function of the

prior distribution. Typically, in a Bayesian estimation the a priori beliefs about the

parameter vector θ are updated using the likelihood function. The posterior distribution

then comprises the state of knowledge about θ consisting of the a priori beliefs and the

information available in the data.

To specify a likelihood function conditioned on the parameters and to turn a DSGE

model into a Bayesian model, a formal representation of the DSGE model is needed.

Hence, we need to solve for the law of motion of the state variables. There exists a

variety of DSGE solution methods, e.g. Blanchard and Kahn (1980), Binder and Pesaran

(1997), King and Watson (1998), Uhlig (1999), Klein (2000), Kim (2000), Christiano

(2002), Anderson (2010). A popular solution technique for a linearized DSGE model

was proposed by Sims (2002) which starts with the following representation of the DSGE

model:
Γ0st = Γ1st−1 +Ψϵt +Πηt (E.2)

where st is the set of state variables, ϵt is the structural shocks vector and ηt the vector of
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the one step ahead rational expectation forecast errors, xt − Et−1xt. Γ0,Γ1,Ψ,Π are real

matrices of appropriate dimensions. The solution is based on the QZ-decomposition, also

referred to as the Schur decomposition. If the above system has a unique stable solution

then it can be represented in the following VAR-form:

st = G0(θ)st−1 +G1(θ)ϵt (E.3)

Applying the solution method proposed by Sims (2002), or any other solution algorithm,

a state space representation can be obtained to specify the likelihood function. In this

setup the VAR-form from above represents the transition equation which is linked to the

data by means of the measurement equation:

yt = H0(θ) +H1(θ)t+H2(θ)st + ut (E.4)

The state space representation allows us to express the joint density function for the

observed data and the DSGE-model variables where the latter are generally unobserved:

p(Y1:T , S1:T |θ) =
T∏
t=1

p(yt, st|Y1:t−1, S1:t−1, θ) =
T∏
t=1

p(yt|st, θ)p(st|st−1, θ) (E.5)

where p(yt|st, θ) and p(st|st−1, θ) are the conditioned probability density functions of the

observables and the states given the parameters and the present and lagged values of the

states. To obtain the desired likelihood function the unobserved states, st, have to be

integrated out. For log-linearized DSGE models with Gaussian disturbance one can use

the Kalman filter to obtain the conditional expectations and variances of the observables

and finally the log-likelihood function. Once the prior distribution of the parameters is

specified one can set up the RWMH algorithm to sample from the posterior density, see

Algorithm E.1.44 In Algorithm E.1 the proposal density q(·|·) is chosen to be the normal

distribution with expected value θ(n−1) which implies that the proposals follow a random

walk. In addition, as the density function of the normal distribution is symmetric, the

proposal densities cancel. The scaling parameter, c0, should be also chosen in a way

that the acceptance ratio equals to 23.4 percent, which was proven to be the optimal

acceptance ratio, see Roberts et al. (1997). In practice however, this parameter is chosen

in a way that the acceptance ratio lies between 20-40 percent.

There are several other modified versions of the MH algorithm. For example, the

Block-MH algorithm breaks the parameter vector into blocks and updates at most only one

44This algorithm summarizes the main steps extensively described in Herbst and Schorfheide (2015).
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Algorithm E.1 Random Walk Metropolis Hastings

1. Maximize lnp(Y |θ) + lnp(θ) by a numerical algorithm to obtain the posterior mode,

denoted by θ̃. This involves the solution of the DSGE model for θ, the calculation

of p(θ), building the state space representation and the evaluation of p(Y |θ) by

applying the Kalman filter.

2. Compute Σ̃, the inverse of the Hessian at θ̃.

3. Initialize a starting value or draw θ(0) from the proposal density q(θ(0)|θ̃) (in this

case N(θ̃, c20Σ̃)), solve the DSGE model for θ(0), calculate p(θ(0)), build the state

space representation and evaluate p(Y |θ(0)) by applying the Kalman filter.

4. For n = 1, ..., N

(a) Draw θ′ from the proposal distribution N (θ(n−1), c20Σ̃).

(b) Solve the DSGE model for θ′.

(c) Calculate p(θ′), build the new state space representation and evaluate p(Y |θ′)
by applying the Kalman filter.

(d) Accept θ′, i.e. (θ(n) = θ′), with probability min
{
1, f(θ(n−1), θ′|Y )

}
and reject

(θ(n) = θ(n−1)) otherwise where

f(θ(n−1), θ′|Y ) =
p(Y |θ′)p(θ′)q(θ′|θ(n−1))

p(Y |θ(n−1))p(θ(n−1))q(θ(n−1)|θ′)
.

5. Estimate the posterior expected value of the function h(θ) by 1
N

∑N
i=1 h(θ

(i)).

block of the parameters at once, applied e.g. by Cúrdia and Reis (2010) with fixed blocks.

This scheme can be further extended by randomizing the break-up of the parameter

vector into blocks in each step, as proposed by Chib and Ramamurthy (2010). A further

possibility to improve the algorithm is to apply a more sophisticated proposal density. In

particular, the Metropolis-Adjusted Langevin (MALA) algorithm, originally proposed by

Besag (1994) and later assessed for its convergence properties by Roberts and Tweedie

(1996), suggests to choose again a normal distribution, however the expected value should

be adjusted by one step into the direction of the gradient of the negative log-posterior.

Updating the current draw along the gradient, this algorithm accounts for the shape of the

posterior density and therefore moves the chain, thus the new proposal for θ, into regions

with higher probability density. It is common to choose a scaled version of the identity
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matrix as the variance. Both the step size into the direction of the gradient and the scaling

of the variance are subject to fine-tuning. As pointed out in Roberts and Tweedie (1996),

using the Langevin-diffusion as an update should be a good choice as it is constructed

in a way that under suitable regularity conditions in continuous time it converges to its

stationary distribution. Therefore, even before the MH-step the candidate chain itself will

approximate the target distribution to be sampled from. Herbst and Schorfheide (2015)

uses instead of the normal distribution a t-distribution for the proposal. Furthermore,

the algorithm benefits from scaling the step size along the gradient by the Hessian at

the posterior mode, also pointed out in Herbst and Schorfheide (2015), based on Roberts

and Stramer (2002). The MH-Newton algorithm differs from the latter MALA-algorithm

in the way that instead of the Hessian at the posterior mode the Hessian at θ(n−1) is

taken and the step size is randomly chosen. For further details we refer to Qi and Minka

(2002).45

Although first-order linear approximations around the non-stochastic steady state are

popular, in a number of cases more elaborate estimation methods are required. For exam-

ple, when higher order approximations are necessary to capture the impact of shocks on

endogenous variables, then the state space will be non-linear. To evaluate the likelihood

in this more complex case particle filters were proposed in the literature, e.g. Fernandez-

Villaverde and Rubio-Ramirez (2007). At the same time, particle filters are also applied

if the posterior likelihood is ill-shaped, e.g. the Sequential Monte Carlo (SMC) algorithm

in Herbst and Schorfheide (2014), which may even occur when standard models are esti-

mated using first order linear approximations. Our extension of the HMC with the SMC

algorithm falls into the latter category of application.

E.2 The Hamiltonian Monte Carlo Method

This section of the paper provides an introduction to the HMC framework. It is aimed to

offer intuition to the reader and to reveal a few main theoretical aspects of the method-

ology.46 Similarly to advanced MCMC methods from above, the HMC algorithm builds

on the information provided by the gradient of the log-posterior density function. In

particular, it uses the information in the geometry of the target distribution, that is, its

45For further discussion and a comparison of the different estimation methods we refer to the work of
Herbst and Schorfheide (2015).

46More extensive treatment is provided e.g. in Neal (2011) or Betancourt (2018).
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shape and the equations characterizing it. Its main advantage is that by means of the

Hamiltonian equations, a concept borrowed from physics, the algorithm enables to pro-

pose a new parameter draw θ′ which is distant from the current θ while it maintains a

sufficiently high acceptance rate.

Before providing a formal descriptive introduction to HMC, let us first illustrate its

main concept by applying it to a simple example.47 In physics researchers model the

evolution of a mechanical system over time given a particle’s position and momentum

usually by functions measuring its potential and kinetic energy. Classical examples of

a mechanical system are a bouncing ball, a pendulum or an oscillating spring. Let us

assume that one intends to sample from a one dimensional standard normal distribution

with density function f(q) = 1/(2π)1/2exp{q2/2}. Intuitively, the aim is to generate more

samples for q in those regions of the domain of q, that is the real line, where the density

function f(q) peaks than in regions of its tails.48 In particular, one would like to generate

samples from each location of the domain of q in proportion to the value of the density

function, f(q), at that location. This case is illustrated in Figure E.1, where the target

density is a normal distribution in black, while the blue circles on the real line represent

the desired samples.

Figure E.1: Sample Draws from a Normal Distribution

Notes: The blue circles show desired sample draws from a standard normal target density, displayed in
black color.

To demonstrate the idea of HMC, let us first consider instead of f(q) the negative log-

arithm of the density function g(q) := −logf(q). That is, we flip over f(q) and obtain

a valley-shaped function g(q), being the new target density. Next, we imagine a person

47Our explanation draws on the example in the excellent book of Lambert (2018).
48This intuition, that the typical set is close to the mode does not apply in higher dimensional problems,

see Betancourt (2018) for additional details.
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using a sleigh and trying to explore the valley covered in snow, i.e. the new target density

defined by g(q). We assume that our explorer starts out at some point in the valley,

sitting on a sleigh, i.e. starting out somewhere on the surface generated by the function

g(q) and is initially pushed randomly with some impulse, either uphill or downhill, see

Figure E.2. In contrast, think of the RWMH algorithm as a person exploring the valley

on foot and proceeding in equally distant steps in random directions. Assuming that our

explorer on the sleigh started its journey downhill, after passing the trough of the valley

she will continue sliding uphill. After getting gradually slower she will stop at some point

and will start sliding again downhill into the opposite direction.

Figure E.2: Hamoltionan Monte Carlo vs. Random Walk Metropolis Hastings

Notes: The figure shows an illustrative comparison between the mode of operation of the RWMH and
the HMC algorithm if sampling from a one dimensional normal density.

Assuming also that the snow-covered surface of the valley is frictionless, this motion

will continue forever. The motion of the sleigh on a frictionless surface can be perfectly

described by the Hamiltonian equation in analogue to the mechanical systems mentioned

before. The total energy of the sleigh can be described by its potential energy function

U(q) := g(q) and its kinetic energy K(p), depending on its momentum p. By moving

up or down the valley the explorer on the sleigh exchanges potential energy U(q) for

kinetic energy K(p). As the sleigh slides down (up) the hill, its potential energy will

decrease (increase) and its kinetic energy increase (decrease). After some time t = T

we record the position q of our sleighing explorer. Given the shape of the terrain the

person with the sleigh will be more often in lower regions of the valley than in higher

regions. In contrast, a RWMH explorer would find it easy to walk downhill to the trough

of the valley, but would struggle to make steps upwards. In other words, under RWMH

sampling a proposal is always accepted if the probability of the new proposal q′ is higher
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compared to the probability of the current draw q, steps downhill, and only accepted

randomly depending on the proportion of the probabilities of q′ and q, steps uphill. Using

RWMH sampling, the explorer would walk down to the valley, and explore the region in

the bottom, i.e. the target density around the mode, but always struggle to make steps

uphill and proceed only very slowly.

A fair question to ask is, what is the reason for the explorer on the sleigh sliding and

arriving always safely at the other side of the valley without struggling. The core of the

concept is that by tracking the momentum p and the kinetic energy K(p) the parameter

space is extended by the same dimension to measure total energy. This extended space is

called the phase space and is fundamental for Hamiltonian dynamics. Defining the kinetic

energy by K(p) := |p|2/(2m), where m corresponds to the mass of the sleigh with the

person, we can describe the system entirely with the Hamiltonian equation H(q, p), also

referred to as the total energy function.

Figure E.3: Visualization of the Hamoltionan Monte Carlo Algorithm

Notes: The figure illustrates the mode of operation of the HMC algorithm in the extended parameter
space if used to sample from a normal density. When the sleigh moves horizontally on the same height
the Hamiltonian equations are used to calculate the path and keep the sleigh on the same energy level.
The vertical move of the sleigh demonstrates a new impulse draw after the sleigh was stopped and the
sample draw was recorded. The new impulse moves the sleigh to a different energy level on which it
again continues exploring the extended parameter space horizontally along the new path defined by the
Hamiltonian equations. Source: author’s illustration.

Visually, extending the parameter space and tracking both position and velocity at the

same time allows the sleigh moving from one side to the other side of the valley by sliding
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around on the same (energy) level, hence moving only horizontally in this simple case, see

Figure E.3. In this extended space, stopping and then pushing the sleigh with a different

impulse is equivalent to ’moving’ it onto a different height, hence energy level, sliding

again along the Hamiltonian, i.e. the contour lines of the extended space. When stopping

the sleigh, the explorer ’brakes’, throws away kinetic energy K(p), e.g. by wasting it while

braking, and records only its position q.

Considering a higher dimensional parameter space with a more irregular density func-

tion to sample from, extending the parameter space and applying the Hamiltonian serves

as a sort of secure trail of movement for our explorer. It allows for being able to describe

an exact path to move along on a (possibly) complicated extended surface so that one

remains always at the same energy level. Hence, the new proposal for the parameter will

always be accepted.

Turning now to a more formal description, in classical mechanics the Hamiltonian

equation is obtained from Lagrange’s equation, a reformulation of the Newtonian me-

chanics, by a Legendre transformation, where H : R2d → R with R2d being the phase

space and d the degrees of freedom. This Hamiltonian framework can be easily trans-

lated to MCMC applications outside physics, by regarding the position of the sleigh, q,

as the variables of interest of which posterior distribution a sample should be drawn. The

main idea is to extend Bayes’ Theorem p(θ|Y ) ∝ p(θ)p(Y |θ) by an auxiliary vector α of

momentum variables to obtain the joint posterior density p(θ, α|Y ) ∝ p(θ, α)p(Y |θ, α) of

θ and α. To each parameter θi one momentum variable αi is assigned. The auxiliary

variables are a priori independent of θ and Y implying that p(θ, α|Y ) ∝ p(θ)p(α)p(Y |θ).

The change in the current position q and momentum p, being both of dimension

d, respectively, over time is characterized by the partial derivatives of the Hamiltonian

equation:

dqi
dt

=
∂H(q, p)

∂pi
∀i = 1, ..., d (E.6)

dpi
dt

= −∂H(q, p)

∂qi
∀i = 1, ..., d (E.7)

where 2d equals the full dimension of the system. The equations of motion can be pre-
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sented in a more compact way by defining z := (q, p) so that

dz

dt
= J∇H(z) (E.8)

with ∇H(z) being the gradient of the Hamiltonian system and J , a matrix of dimension

2d× 2d:

J =

 0d×d Id×d

−Id×d 0d×d


The solution to this system of differential equations can be regarded as a mapping Ts :

Rd × Rd → Rd × Rd with (q, p)(t) → (q, p)(t + s). Thus, the Hamiltonian equations

describe the law of motion of the system from t to t+ s.

The Hamiltonian measures total energy in the system, that is potential energy and

kinetic energy, consequently for the HMC algorithm it takes the additive form

H(p, q) = U(q) +K(p). (E.9)

The kinetic energy K(p) is usually defined as

K(p) = pTM−1p/2 (E.10)

where M is referred to as the ’mass matrix’ which is typically diagonal, and is often a

scalar multiple of the identity matrix as it often stands for the mass of some bodies or

particles.49

The Hamiltonian system has four key properties which allow for using it for the con-

struction of an MCMC algorithm. Firstly, the Hamiltonian does not change over time,

that is, dH/dt = 0, which is crucial to ensure that the acceptance probability equals

always one.

Secondly, the Hamiltonian system preserves the volume in the phase space. Without

venturing too deeply into details of volume measures of a phase space it suffices to state

that this property is necessary to avoid accounting for a change in the volume when

computing the acceptance probability.

49In the estimation procedure this assumption can be released and the off-diagonal elements can be
also non-zero.
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Thirdly, the Hamiltonian system is symplectic. Formally this corresponds to the prop-

erty that the Jacobian Bs := DTs of the mapping Ts, satisfies the following equation:

BT
s ABs = A (E.11)

where A is in general a fixed 2d× 2d, non-singular, skew symmetric matrix. Usually, the

matrix J from above is chosen for A. The determinant of the matrix J is unity and it

holds that J−1 = JT = −J . The symplecticness condition implies that the mapping is

volume preserving as from the equation above it immediately follows that |det(Bs)| = 1.

Yet, the above property is stronger than just volume preservation if d > 1. This property

is important, as in practice Hamiltonian equations can be solved only by numerical inte-

gration. Although a large number of numerical integrators exist, most of them are prone

to accumulate approximation errors. Consequently, the accuracy of the solution will be

significantly impaired. However, to solve for the Hamiltonian, symplectic integrators can

be applied having the advantage that the approximated trajectory does not drift away

from the true one.

Finally, the mapping Ts defined above is reversible, that is Ts has an inverse T−s which

is exactly the negation of the time derivatives in the Hamiltonian equations. Considering

again the example with the sleigh one can imagine this as stopping the explorer at q(t+s)

and pushing the sleigh into the opposite direction with the same impulse. In case K(p) =

pTM−1p/2 one can negate K(p), apply Ts and then negate again K(p) to obtain the

original (q, p)(t) where the explorer departed from. The reversibility property is crucial

when proving the detailed balanced condition in the probabilistic framework which ensures

together with ergodicity that HMC converges to the invariant distribution.

To apply this framework to a probabilistic setting borrowing one further concept from

statistical mechanics is necessary referred to as the ’cannonical’ distribution at a given

temperature. This concept describes possible states of a mechanical system which is at

thermal equilibrium at temperature T . For the latter purpose the following distribution

is used:

P (x) =
1

Z
e−E(x)/T (E.12)

where we assume that the energy E(x) and its gradient can be evaluated. Any particular

density P (x) can be adopted to the above scheme by setting E(x) = −log P (x) − logZ
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and T = 1. The HMC algorithm translates this framework into an MCMC-sampling

algorithm by applying the Hamiltonian equation as the total energy function for the joint

state (q, p) which results in the following cannonical distribution:

P (q, p) =
1

Z
e−H(q,p)/T (E.13)

with H(q, p) = U(q) +K(p) we obtain

P (q, p) =
1

Z
e−U(q)/T e−K(p)/T (E.14)

Setting for U(q) the negative logarithm of the target density −log(p(Y |θ)p(θ)) and for

K(p) the kinetic energy function allows to define an algorithm which samples from the

distribution of interest. The iteration is carried out in three steps as described by Algo-

rithm E.2. As the total energy in the system remains constant, in theory the proposal

Algorithm E.2 Hamiltonian Monte Carlo

1. Draw a momentum vector p from its multivariate normal distribution which can be

carried out by Gibbs-sampling.

2. Draw the position vector and the momentum vector (q′, p′) by applying the Hamil-

tonian equations deterministically starting from q = θ(n) and p.

3. Metropolis-Hastings step: accept the new proposal and set θ(n+1) = q′ with proba-

bility min[1, exp(−(U(q′)− U(q) +K(p′)−K(p)))]

obtained by applying the Hamiltonian equations is always accepted. To obtain a sample

from the target distribution one simply omits the sampled momenta. It is well known

that in order to show that the resulting Markov chain converges to the target distribution

it has to be ergodic and has to fulfill the detailed balance condition:

P (q, p)PK((q, p) → (q′, p′)) = P (q′, p′)PK((q
′, p′) → (q, p)) (E.15)

where PK is the HMC kernel. The key property that allows to proof that the detailed

balance condition holds is the reversibility of the Hamiltonian system. In addition, the

symplecticness of the numerical integrator to be used ensures that detailed balance holds

even if the solution is approximated numerically. A formal proof is available in Duane et
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al. (1987). As regards ergodicity, the latter paper does not provide any insights, instead it

assesses using an example in compact quantum electrodynamics ”Whether or not this idea

works in practice...”. Proving ergodicity for the HMC algorithm involves deep knowledge

in probability theory and would go beyond the scope of this paper. Very loosely spoken,

ergodicity implies that the Markov chain will not be trapped in a subset of the parameter

space, instead it will reach all possible states again and again, hence it will asymptotically

converge to the invariant distribution. Neal (2011) points out that in theory it is possible

that ergodicity fails once a fixed number of integration steps is used for the numerical

approximation of the solution and illustrates this based on a short example. Mackenze

(1989) proposes that by randomizing the length of the Hamiltonian trajectory this issue

can be eliminated while recently more general conditions for ergodicity, and hence for

convergence of the HMC algorithm could be proved, see e.g. Livingstone et al. (2018) and

Durmus et al. (2019).

E.3 Implementation in Stan

Stan is a state-of-the-art probabilistic programming language for Bayesian inference writ-

ten in C++ language. It allows users to set up hierarchical Bayesian models in a con-

venient statistical language and provides thereby an easy to apply interface to the HMC

algorithm for complex models. C++ is a machine-oriented programming language and is

often applied to perform computationally highly intensive calculations due to its perfor-

mance, necessary to estimate a DSGE model. Yet, this comes at the cost of complexity

in terms of the programming language which the Stan interface remedies and makes this

a powerful and complex concept available to researchers, working out-of-the-box.

E.3.1 Features and Calibration

The Hamiltonian equations typically describe the dynamics of a system in continuous

time. However, in practice it will be necessary to apply a discrete-time approximation in

order to calculate the new position, the momentum and the total energy level, which is

the sum of potential energy and kinetic energy. One of the key challenges lies in the accu-

rate solution of the Hamiltonian equations. As discussed before, the Hamiltonian system

is symplectic. Thus, a dedicated class of symplectic integrators can be applied enabling

the calculation of an accurate discrete time solution for the Hamiltonian trajectory in the
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phase space. The main advantage of the latter class of integrators is that the approxi-

mated trajectory does not drift away from the true one, even if integration is carried out

over a long distance, hence a long period of time. Stan uses a simple implementation

referred to as ’leapfrogging’ to solve for the discrete-time approximation of the Hamilto-

nian equations which is summarized by Algorithm E.3. Although at first glance the above

algorithm is easy to implement, it generates a further challenge, especially when applied

in the context of DSGE estimation. In general it requires the evaluation of the gradient

of the log-posterior which calculation might be extremely difficult and time intensive.

Gradients obtained by numerical approximations can be inaccurate or computationally

demanding when the parameter space is large.

Algorithm E.3 Leapfrogging

1. pi(t+ ϵ/2) = pi(t)− (ϵ/2) ∂U
∂qi

(q(t))

2. qi(t+ ϵ) = qi(t) + ϵpi(t+ϵ/2)
mi

3. pi(t+ ϵ) = pi(t+ ϵ/2)− (ϵ/2) ∂U
∂qi

(q(t+ ϵ))

One of the main advantages of Stan is that it applies a reverse-mode automatic differen-

tiation and C++ template metaprogramming. Automatic differentiation requires only a

limited number of differentiation rules and the gradient is constructed via the chain rule

by creating an expression tree backwards starting with the last expression in the likelihood

function. For example, Stan is capable of differentiating any iterative algorithm which is

particularly useful when implementing the estimation of DSGE models. Therefore, there

is no need for the user to specify any derivatives manually, yet in theory it is possible to

write wrappers if a closed form solution of the partial derivatives is available. Although

the derivation of the log-likelihood function which depends on the solution of the DSGE

model is computationally involved for a mid-scale DSGE model, the latter is performed

by Stan automatically and efficiently due to the availability of symbolic differentiation.

The performance of the algorithm is sensitive to the selection of two parameters:

the step size, ϵ and the number of steps in time, L. The selection of the discrete time

approximation to calculate the integral, ϵ, is of crucial importance. If the approximation

is overly fine, then the proposal to update θ will be accepted with very high probability,

yet the distance ||θ′ − θ|| will be small and the chain will explore the parameter space
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very slowly. If ϵ is too high, the approximation of the true solution to the Hamiltonian

equation will become imprecise, or may even diverge, and θ′ will be unlikely to be accepted.

Furthermore, it can also occur that the Markov chain will fail completely to explore certain

regions of the posterior. Usually, the posterior likelihood function exhibits regions with

both lower and higher curvature especially if the model is more complex, therefore one has

to strike the right balance when setting ϵ. A further strength of Stan lies in the feature

that ϵ is calibrated automatically during the warm-up period and fixed afterwards, yet

the user retains the option to set the parameter manually. Stan aims to calibrate ϵ in

a way that the acceptance rate lies at 80 percent, significantly higher than 23.4 percent

in the RWMH algorithm. In case the divergence rate remains still high, the automated

calibration mechanism in Stan can be still instructed to target higher acceptance ratios.

It is crucial to select a suitable number of steps, L, to be conducted by the leapfrogging

algorithm in order to explore the state space systematically as pointed out by Neal (2011).

An inappropriately low L will cause θ′ to be too close to θ, hence the algorithm will

exhibit random walk behavior and the Markov chain will explore the parameter space

again inefficiently slowly, as also highlighted by Hoffman and Gelman (2014). If L is

too large, computational resources are wasted as the acceptance rate does not depend

systematically on the number of steps. A further built-in feature of Stan is that it

automatically optimizes the number of steps by means of the No U-Turn Sampling (NUTS)

algorithm, see Hoffman and Gelman (2014). The intuition of NUTS is to use the leapfrog

integrator to iterate on θ both in positive and negative directions, doubling the number

of steps each time. That is, first running forwards or backwards 1 step, then forwards or

backwards 2 steps, then forwards or backwards 4 steps and so on. The doubling process

implicitly builds a balanced binary tree and continues until some proposal would move

backwards to its original point of departure, θ, making a U-turn and moving again towards

the point of departure. Stan applies then a slice sampling algorithm to select randomly

a point along the Hamiltonian trajectory which adds complexity, yet it is necessary to

preserve the reversibility condition of the generated Markov chain.

The mass matrix M , being typically a diagonal matrix is tuned automatically during

the warm-up. Here, the user is allowed to tune M manually, however the automated

tuning process of Stan operates sufficiently well. Furthermore, if desired, a dense matrix

with non-zero off-diagonal elements can be also applied for the estimation, which could
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result in improved efficiency.

A further useful feature which is implemented in Stan is that it is able to remedy the

weakness that the HMC algorithm works only if the support of the posterior density spans

the entire parameter space. If a proposal is accepted in a region where the mass of the

parameter space is zero, the gradient will become zero or undefined and the chain will get

stuck. A straightforward approach to avoid this issue is to restrict the parameter space

and let the Markov chain bounce back from the boundary by negating the momentum.

However, Stan instead reparameterizes θ as a function of unbounded parameters. This

occurs typically when standard deviations are estimated. The latter approach obviously

involves the calculation of the Jacobian, however this is carried out again automatically

by Stan.

As already pointed out, the main advantage of the HMC algorithm is that it uses gra-

dient information to explore suitable paths on which the level of energy remains constant

and finds new proposals θ′ which are distant from the most recent draw θ. However, it

comes along with the difficulty that the gradient of the log-likelihood function needs to be

evaluated. Recall that the popular solution algorithm to DSGE models proposed by Sims

(2002) uses a QZ-decomposition where the entries of the matrices can become complex. A

main shortcoming of Stan is that it is not capable of executing calculations with complex

numbers, hence a QZ decomposition cannot be implemented. Furthermore, it might be

challenging to build the derivatives when complex numbers are involved. To overcome

this difficulty we need to rely on a DSGE model solution algorithm which makes it feasi-

ble to the automated differentiation implemented in Stan to calculate the gradient. The

reverse-mode automatic differentiation relies on the chain rule when building the symbolic

derivative, hence it is capable to handle any matrix iteration algorithm where no complex

numbers are involved. A straightforward and easy to understand DSGE solution method

to remedy these shortcomings is the Binder and Pesaran (1997) solution algorithm.

E.3.2 Binder-Pesaran Algorithm

The main idea of the Binder and Pesaran (1997) algorithm is to rewrite st in a way that

the reshuffled form will not contain the st−1 term and the system can be solved forward

in case it has a unique stable solution. A short recap of the main steps of the algorithm

looks as follows. Without loss of generality let the system be given in a slightly different

99



form than the Sims (2002) canonical formula:

M00st = M10st−1 +M01Etst+1 +Msϵt (E.16)

In the following it is assumed that M00 is invertible which implies that

st = Ast−1 + BEtst+1 +Wϵt (E.17)

with A = M−1
00 M10, B = M−1

00 M01 and W = M−1
00 Ms. The assumption that M00 has to

be invertible might be slightly restrictive at first sight. However, the matrix can become

only non-invertible when a linear combination of future expectations in t + 1 depends

only on linear combinations of past values of endogenous variables and shocks which does

not seem to be an issue in practice. Anderson (2008) also compared and benchmarked

a handful of DSGE solution algorithms on several models and did not report any issues

related to the non-invertibility of M00.
50 Now let St := st − Cst−1 with St and C to be

determined. st can be expressed from the definition and substituted above to obtain

St + Cst−1 = Ast−1 + B(EtSt+1 + Cst) +Wϵt (E.18)

Substituting out st again, collecting and rearranging terms yields

(I− BC)St = (BC2 − C + A)st−1 + B(EtSt+1) +Wϵt (E.19)

The backward looking component will drop out of the equation if BC2 −C+A = 0. The

solution of this quadratic matrix equation can be easily obtained by iterating on

Ck+1 = (I− BCk)
−1A (E.20)

Anderson (2008) reported though that solving this quadratic equation system is very

costly and in some cases the iteration failed to converge to the correct solution. A potential

reason could be for example that inverses of badly conditioned matrices are inaccurate. As

a solution one can reparameterize the model, precondition the equation, or use a different

50Even if this feature of the algorithm presented an issue a number slightly larger than machine precision
could be added to the matrix which would not influence the results.

100



iterative method.51 We choose the latter and present our approach in detail in the next

subsection. Given a solution for C the system of equations can be written as follows:

St = (I− BC)−1B︸ ︷︷ ︸
=:F

(EtSt+1) + (I− BC)−1Wϵt︸ ︷︷ ︸
=:ζt

(E.21)

If all eigenvalues of the matrix F are stable the equation can be easily solved forward to

obtain

St =
∞∑
i=0

FiEtζt+i (E.22)

To arrive to the unique stable solution of the original model it suffices to plug back the

definition of St:

st = Cst−1 +
∞∑
i=0

Fi(I− BC)−1WEtϵt+i (E.23)

If structural shocks are uncorrelated then the above formula boils down to:

st = Cst−1 + (I− BC)−1Wϵt (E.24)

For the vast majority of the DSGE models one can thus apply the following short algo-

rithm to obtain the solution:

Algorithm E.4 Binder-Pesaran DSGE Solution

1. Rewrite the DSGE model into the following form:

M00st = M10st−1 +M01Etst+1 +Msϵt

2. Compute the matrices A = M−1
00 M10, B = M−1

00 M01 and W = M−1
00 Ms

3. Iterate the equation Ck+1 = (I−BCk)
−1A with an educated guess or setting C0 = A

until the matrix C converges.

4. Calculate D := (I− BC)−1W to obtain the solution form:

st = Cst−1 +Dϵt

Hence, by applying this algorithm one obtains the solution to a large class of DSGE

models by simple matrix iterations and multiplications which can be differentiated in a

51The quadratic matrix equation could be also solved by other techniques from linear algebra, however
this would again involve the calculation of generalized eigenvalues.
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way that the solution method can be implemented in the Stan software package.

E.3.3 Further Computational Issues

To find a solution to a DSGE model Binder and Pesaran (1997) propose to iterate the

solution to the C matrix using the following rule: Ck+1 = (I−BCk)
−1A. Although Stan is

able to cope with the latter iteration types, the calculation of inverses is computationally

one of the most expensive operations, therefore it should be generally avoided. Instead

one can directly plug in any initial guess into the equation Ck+1 = BC2
k + A until it

converges.52

Although the Binder and Pesaran (1997) algorithm is transparent and easy to im-

plement it has a main drawback. While the solution method proposed by Sims (2002)

provides conditions which are necessary and also sufficient to guarantee that the model

has a unique stable solution, for the Binder-Pesaran algorithm only a set of sufficient con-

ditions under which a unique stable solution exists were derived. In particular, the matrix

iteration will also converge if the model has multiple equilibria, however these solutions

are commonly excluded when DSGE models are estimated. Therefore, to assess whether

the model has a unique stable solution, we rely on the Sims (2002) algorithm. Although

Stan is not capable of dealing with complex numbers, external functions can be included

into the algorithm and also partial derivatives of external functions could be manually

specified. Yet, this is not necessary as the Sims (2002) algorithm is only used to reject

the sample draw in case the Hamiltonian sampler enters a point in the parameter space

where the model has no unique stable solution. For the latter purpose no calculation of

the derivative is needed. To implement several matrix decompositions to execute the Sims

(2002) algorithm we rely on the Intel Math Kernel Library (Intel MKL), a collection of

BLAS and LAPACK algorithms, also used by Matlab, which we link into our Stan C++

code. Alternatively, one could also possibly assess the uniqueness of the obtained solution

by the methodology provided in Lan and Meyer-Gohde (2014).

A further computational issue arises when the covariance matrix Σ is initialized for the

Kalman filter. Hamilton (1994) proposes to use Kronecker products to solve for Σ which

Stan is able to handle, however it is computationally very costly since the dimension

52Although there is no guarantee for convergence we were not confronted with the latter issue when
executed the algorithm. Furthermore, one can always check the correctness of the solution by plugging
it back into the quadratic equation to be solved.
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of the problem grows quadratically with the number of equations the model consists of.

Since the solution of the DSGE model has to be non-explosive we can obtain Σ again by

an iterative procedure. However, as Σ has an impact on the log-likelihood the calculation

of this part of the gradient is costly once a large number of iterations is necessary to

achieve convergence. The initial variance is generally obtained by solving the discrete

Lyapunov equation which belongs to the class of Stein matrix equations. Several iterative

procedures are proposed in Zhoua et al. (2009) which accelerate the iteration exponentially

and enable to calculate parts of the derivative in one step.

Altering the iteration procedure in the Binder-Pesaran algorithm and the adoption of

a more efficient calculation to initialize the Kalman filter speeded up the algorithm by a

factor of 3-4 for a mid-scale NK-model. In general we can state that the calculation of the

gradient is costly therefore streamlining the model setup is necessary as far as possible to

avoid additional computational burden which increases exponentially with the dimension

of the model.
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